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Abstract

The flap-lag equations of motion of an isolated rotor

blade and those for a rigid helicopter containing four blades
free to flap and lag are derived. Control techniques are
developed which stabilize both sgystems for a variety of
flight conditions.
Y Floquet theory is used to investigate the stability of a
4 rotor blade’'s flap-lag motion. A modal control technique,
based on Floquet theory, ig used to eliminate the blade’'s
ingtabilities using existing collective and c¢yclic pitch
control mechanisms. The technique shifts the unstable roots
to desired locations while leaving the other roots unaltered.
The control, developed for a single design point, is shown to
gignificantly reduce or eliminate regions of flap-lag
ingtabilities for a variety of off-design conditions. Both
scalar and vector control are successfully usged to sgtabilize
the blade’s motion.

Coupling the flap-lag equations of motion of four rotor
bladeg to a rigid airframe alters the flap, lag, and airframe
roots. The airframe roots are stabilized using a combination
of the body'’'s pitch attitude and pitch rate feedback to the
main rotor’'s longitudinal cyclic pitch. The modal control
: technique ig used to eliminate multiple blade instabilities
? by first controlling a pair of unstable roots at a specific

degign point. The resulting closed 1loop system is a new

xix
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linear system with periodic coefficients. Another modal
k ® controller is designed for this new system to ghift a second
pair of unstable roots to desired locations. This process is

repeated until all instabilities are eliminated. Numerical

0

A

inaccuracies, however, become noticeable when modal control

. 4
| A

ig used more than once.
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(.. TIME PERIODIC CONTROL OF A MULTI-BLADE HELICOPTER
f
f
s
>
g I. Introduction
K>
N ®
{
8N
.
: A helicopter ig a mechanically complex aircraft whose
:..> stability and control characteristica are often marginal
unless a reliable automatic control system is used.
N
Z Effective modeling of dynamic effects is crucial to the =safe
;: design of a succegsful helicopter. It is, therefore,
.(
o esgsential to consider the basgic dynamic behavior of
. helicopterg so that potential instabilities can be simulated
; and eliminated in the design process. However, the dynamics
(K4
of a helicopter in hover and in forward flight involve the
N coupled motions of the rotor blades and the fuselage. It is=s
oY
N convenient to analyze and understand the helicopter rotor
o
o blade and fuselage dynamics separately before their coupling
:5 is examined.
k.
4
- Rotor Blade Dynamics
.f Many researchers have examined the =stability of an
.
at isolated rotor blade in hover and in forward flight. The
ﬁj helicopter blade can be modeled as a rigid body rotation
‘0
! about the blade root, which is attached to the rotor hub
C
3 (1;2). The blade has three degrees of freedom: flap; lag;

" 1
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rotor shaft

Figure 1. Blade Motion

and pitch (or feather) rotations about hinges at the blade
root (see Figure 1). MNote that, in the figure, Q 1is the
rotor’'s rotational speed while 2 iz the blade flap angle and
is positive for upward motion of the blade. The blade 1lag
angle, [, i8 positive when it is opposite the direction of
the rotor blade’'s rotation, and 68, the blade pitch angle, 1i=s
the feathering motion produced by rotating the blade about a
hinge at the root and is positive for nose-up blade rotation.
The bladeg on a helicopter are maintained in uniform
rotational motion, where the rotation direction is assumed to
be counterclockwise ag seen from above.

Two fundamental types of mathematical models are used to
describe the flap and lag motion of a blade. The first model
congists of a hinged, spring-restrained, rigid blade. Hinges
at the blade root allow free motion of the blade both
perpendicular to and in the plane of rotation. A schematic
of the hinge arrangement is shown in Figure 2.

A flapping hinge alleviates the root stresses and hub

moments by permitting blade motion out of the diak plane.
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Lag Hinge
o as

-~ —~Flap Hinge

Hub
”’,—Pitch Bearing
Feathering
Axis
Rotor
Shaft

To Control
System

Figure 2. BRotor Hinge Arrangement (2:7)

However, this flapping motion introduces aerodynamic and
inertial forceg in the disk plane, 8o a lag hinge is
introduced to reduce chordwise root 1loads by allowing
in-plane motion. A pitch, or feathering, hinge is also
required to control the rotor by changing the blade’'s angle
of attack. On a hinged blade, the pitch hinge 18 wusually
outboard of the flap and lag hinges (Figure 2). Motion about
the flap and lag hinges is restrained by centrifugal forces,
while the control system restrains motion about the pitch
hinge (2).

The second model describing blade motion, applied ¢to
hingeless rotors, treats the blade as an elastic beam. The
blade is attached to the rotor hudb without flap or lag
hinges, though there are often hinges for the feathering
motion. The blade i attached ¢to the rotor hub by a

3
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cantilever root resgtraint, and blade motion occurs through
bending at the root. The s8tructural stiffness is =2mall
compared to the centrifugal stiffening of the blade; hence,
the fundamental structural mode shape is not too different
from the flapping motion of a hinged, rigid blade.
Therefore, the remainder of this study deals with the motion
of a hinged, rigid blade.

The basic derivation of a helicopter blade’'s equations
of motion has been well documented (1-5). The simplest model
congiders an isolated rotor blade’s flap dynamics in hover
and in forward flight. Flapping instabilities at moderate to
high advance ratios have been extensively examined using this
model (6-10). Sisgsingh and Kuczyncki (11), as well as
Hohenemser and Prelewicz (12), extended their investigations
of flapping instabilities to include the effect of the blade
torgional degree of freedom on the rotor's stability
boundaries and response characteristics.

Various procedures have been incorporated to analyze an
isolated rotor blade’'s equations of motion and obtain the
rotor’'s flapping stability limits. Some of these methods
have included: generating time history responses by analog
or digital integration of the equations of motion (8;9;11);
analytically solving the system’s equations of motion by the
rectangular ripple method (10); and modeling the helicopter
blade as a linear aystem with periodically varying
coefficients and wusing Floquet theory to determine the
system’'s characteristic exponents (7). Hohenemser and

4
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Prelewicz (12) discovered that a simple system identification

method applying a linear sequential estimator could be used
to solve the transient responses in the flap-bending and
torsion of a rotor blade. Even with these varying methods of
solution, all of the studies indicated flap instabilities at
high advance ratiog and therefore considered the effects of
reversed flow.

To examine a rotor blade’s stability at more realistic
advance ratios, investigations have also been extended to
include analyzing the blade’'s coupled flap-lag motion
(13-22). Friedmann and Silverthorn (13) examined the
flap-lag motion of a cantilevered rotor blade at arbitrary
advance ratios. They concluded that instabilities predicted
by flap only models could be inaccurate due to the neglected
lag degree of freedom and that coupled flap-lag instabilities
occurred at lower values of the advance ratios than when only
the flap degree of freedom was consgidered. Peters (15)
investigated the flap-lag stability of hinged rigid blades in
forward flight and concluded that flap-lag stability was very
gsengitive to the moment trim and propulsive trim conditions
placed on the rotor. Further, for advance ratios between
0.10 and 0.50, excluding periodic coefficients and wusing
constant coefficient equations of motion resulted in
erroneous flap-lag stability predictions. Kaza and Kvaternik
(16) examined the stability of a hinged blade in hover and in
forward flight for both flap-lag and lag-flap hinge

s8equences. Thesgse authors discovered that the form of the

5

‘\J«N ‘l*\v)'\ﬁ'\ .




N W T Wd 0 "l ~ o - 4 e dhhe —Ale Aol 2 = Eah o e & A B AR AR A A i B ASE Sl ATE bk b okl alfh obh AlE o RA oA _BE aLd ol
N I

!
13
:
- coupling terms in the helicopter blade’'s equations of motion
J depended on the hinge sequence wused which, consequently,
g"’ influenced the blade’'s stability. Finally, studies (2;15)
'§ reported that the effect of the reversed flow region was
; negligible for advance ratios less than 0.50.
.. An improved model of a helicopter blade is the
g introduction of a third degree of freedom, torasional motion
E:. (which is also known as feathering rotation). Again, studies
~ have examined the stability of coupled flap-lag-torsgion
Ny
.E motion on hinged rotors (23-26). Panda and Chopra (26)
} investigated the effects of flap bending, 1lag bending, and
\.ﬁ torgsion on the stability of an isolated blade in forward
a flight. They found that raising the blade's torsional
5‘ stiffness increased lag mode damping at lower forward speeds
({. (advance ratiog lesg than 0.30) and decreased lag wmode
E damping at higher forward speeds. Consequently, stability
fl marging predicted from flap-lag studies may be lower than
1‘ flap-lag-torsional analyses.
% Calculating the stability regions of both the flap-lag
motion and the flap-lag-torsion motion of a helicopter blade
: have been accomplished with various procedures. Several
E studie#2 have linearized the equations of motion about a
‘2 periodic equilibrium position to obtain a system of linear
.!L ordinary differential equations with periodic coefficients
; and used Floquet theory to determine the system’'s stability
‘: (13;15;16;25;27). Kaza and Kvaternik (16) analyzed rotor
-C flap-lag instabilities by transforming the blade’'s equations
- 6
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of motion to a nonrotating, space-fixed coordinate syastem and

time averaging the equations’' periodic coefficients to obtain
an approximate system of linear equations with constant
coefficients. Crimi (21) extended Hill's method to solve a
system of second order linear differential equationa with
periodic coefficientg. This method yielded a set of complex
exponentg, in Floquet's form, a2 an initial value s#olution,
and provided a quantitative measure of the system’'s
stability. Quasgi-linearization was wutilized by Panda and
Chopra (26) to solve the nonlinear equations of motion with
an iterative procedure based on Floquet theory. This type of
solution contained all the harmonics for flap, 1lag and
torsion response amplitudes. Finally, harmonic balancing was
uged (15) to calculate a blade’'s steady-state response by
agsuming the responsge wasg periodic and consisted of a sum of
a finite number of harmonics. This procedure, however, could
become quite involved for coupled systems with
nonlinearities. Frequently, though, accurate solutions were
obtained when the harmonic balance method was restricted to
only zero and first order harmonics.

Friedmann (27) provided an excellent review of the
aeroelastic stability and regponse problems associated with
igolated rotor blades and coupled rotor/fuselage systems in
hover and in forward flight. He summarized the stability
analyses of coupled flap-lag and coupled flap-lag-torsion
motions of bladesg, and discussed the importance of ¢trim and
nonlinear terms on blade stability. Further, he reviewed the
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coupled rotor/fuselage aeroelastic problem and noted that

helicopter stability analyses have basically been restricted

s

to single blade or isolated blade aeroelastic problems.

Friedmann noted that interblade mechanical couplings or

RN

couplings between the rotor and the fuselage could have

gignificant effects on a helicopter’s dynamic stability.

g
v

r.'v _‘r_ L

Coupled Rotor/Fuselage Dynamics

¢

To study the =stability characteristice of a coupled

R W AW

rotor/fuselage system a simple, yet accurate, mathematical

».

@
ﬂ

model is required. Indeed, this area of study has been

addressed; several authors (1;2;5) provided a brief

introduction to developing the equations of motion of the

entire helicopter, ¢to include both the rotors and the

AR

airframe. Bousman (28) obtained experimental data on the

T ) ’-q,.

l,'l.'-

gstability of a hingeless rotor mounted on a gpecial gimbaled

’

r

support which simulated body pitch and roll degrees of
freedom. He then compared this data with theoretical results
he had obtained from an analytical model. Other studies
(29-38) have introduced analytical models to examine coupled
rotor/fuselage dynamics. Further, a detailed description of

the procedure followed to obtain a set of rotor/fuselage

, ’ _‘_ “,
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equations of motion wag accomplished by Venkatesan and
Friedmann (39). These authors presented a set of governing
K- coupled differential equations for a model representing a
0 Hybrid Heavy Lift Helicopter, which used a multiple rotor
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system for its operation. They subsequently reduced these
equations to a single rotor model and obtained a simplified
system of coupled rotor/fuselage equations which produced
results agreeing favorably with experimental data (40). The
model included a rotor with three or more hinged, rigid
blades and, in deriving the system’'s equations of motion,
neglected terms second order and higher.

Solving the equations of motion to determine the
stability regions of a coupled rotor/fuselage system can be
accomplisghed with many of the methods used for the isolated
blade cases. Because the equationsg are so complex, industry
has developed a number of complex analyses and have
implemented them in sophisticated computer programs
(27;35;36). It is possible, however, to gimplify the coupled
rotor/fuselage equations of motion so that relatively
uncomplicated procedures can be used to determine the asytem's
stability (31;32;34;37). For example, Straub and Warmbrodt
(31) and Straub (37) converted linearized perturbation
equations with periodic coefficients into a constant
coefficient system using a Fourier coordinate transformation
8o the system’s stability could be evaluated by performing an

eigenvalue analysis.

Helicopter Control

Rather than just documenting where the instabilitiesz of
an isolated rotor blade or a coupled rotor/fuselage system

a PUN Mo




will occur, it would be desirable to actually reduce or
eliminate those instabilities.

For example, Peters and Hohenemser (7) wused Floquet
theory to establish the stability of a rotor blade’'s flapping
equations of motion with 69 (pitch-flap coupling angle; it is
positive if the pitch is decreased when the blade flaps wup)
and tilt-moment feedback. They found that adding the
feedback to the linearized equationgs delayed the onset of
ingtabilities. After linearizing an isolated rotor blade’'s
flap-lag equations of motion, Johnson and Hohenemser (22)
described a rotor thrust or tilting moment feedback control
system which essentially eliminated the blade’'s first order
flapping harmonics. Even though the system did not eliminate
higher blade flap bending harmonica, it did minimize the
chordwise and flapwise blade motions. Similarly, Gaffey (17)
concluded that negative 69 feedback eliminated flap-lag blade
motion instabilities gince it separated the flap and 1lag
natural frequencies. However, this also introduced the
posgibility of a flapping divergence. Further, Gaffey
discovered that the effect of negative 6s on pitch-lag
instabilities was stabilizing.

Rotor blade control has also been accomplished by
degigning the blade as an elliptically-shaped circulation
controlled airfoil with a simple c¢yclic control mechanism
based on blade pressure variation rather than blade pitch
variation (24). A thin jet of air blown from a spanwise slot
along the blade’'s rounded trailing edge controlled blade 1lift

10
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(23). This model delayed the onset of flap-lag-torsion
instabilities without any moving partg other than the
rotating blades.

Guinn’'s (41) rotor control design placed the control
actuatorg, power supplies and computers in the rotating
control system. Referred to as an “Individual Blade Control
Independent of a Swashplate® (IBIS), this system consisted of
four sgingle actuators per blade, each controlled by a
different power supply located at the rotor hub. Four
computers, also located at the hub, processed the control
data. Guinn claimed advantages in reliability, drag, weight,
and cost over conventional swashplate control systems.

As for controlling coupled rotor/fuselage motion,
Miyajimi (28) developed a stability and control augmentation
system whereby the helicopter was represented by a mix-degree
of freedom rigid body (excluding the rotors) with constant
factors used as weightings for the state and control
variables. A least squares design method was applied to
determine the control augmentation saystem. Then, blade

flapping motion was included using the method of multiblade

j coordinates, and linear optimal control theory was applied to
determine the appropriate feedback gains for the stability
augmentation system.

Straub and Warmbrodt (31), after approximating the
coupled rotor/fuselage equations of motion with constant

coefficients, used state variable feedback with appropriate

closed-loop feedback phase and gain margins. They then
11
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described the use of active blade pitch control to increase

helicopter rotor/fuselage damping by showing that active
control through a conventional swashplate increased damping
levels and eliminated ground resonance instabilities for a
wide variety of rotor configurations. Straudb (37) extended
these results by applying multivariable optimal control
techniques to control aeromechanical stability at all rotor
gspeeds.

The feaedback controllers described above typically
adjusted damping levels to delay or eliminate instabilities.
In addition, the equations of motion were usually modeled as
linear gystems with constant coefficients.

Recently, active control of helicopter blade flapping
has been accomplished using Floquet theory ¢to allow pole
placement in linear periodic systems (42;43). This method
works directly with the time periodic linear equations and
alters the unstable eigenvalues of the periodic system while
leaving the others unchanged. Calico and March (42) applied
this modal control technique to control the flapping motion
of a gsingle helicopter blade by using a flap torque actuator
at the blade root. However, actually implementing this
actuator would increase the rotor's cosat, complexity,
maintenance, weight, and hub drag (31:13-14). Hence, Calico
and Wiesel (43) implemented a pole-placement type of control
system by using the collective and cyclic pitch controls on a
conventional swashplate. In addition, they extended +their
analysis to include two blades and examined the blades’

12
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flapping stability throughout the flight regime. Their
™ controller did indeed eliminate the flapping instabilities of
p one and two helicopter blades at high advance ratios.
; Although both studies (42;43) dealt only with blade flapping
lO instabilities at high advance ratios, the technique utilized
: is directly applicable to controlling the instabilities of
1 more complex helicopter models.
:. Implementing the modal control technique has several
advantages over previous attempts to reduce or eliminate
blade (17;22;23) and rotor/fuselage (31;37;44) instabilities.
c For example, thrust, 63. or tilt feedback control 1is no
: longer required, and conventional swashplates can be used in
; the control system. The linear periodic aystem isg not
». approximated by a constant coefficient saystem in order to
,( apply state feedback control. Consequently, active control
_I of blade and rotor/fuselage motion using collective and
O cyclic pitch mechanisms to eliminate the system’s unstable
. modes could possibly enhance a helicopter’'s stability.
;‘ Problem Statement
This research effort 1is8 intended to demonstrate a
i control technique which does indeed improve a helicopter’'s
) stability. As previously mentioned, the modal control
! technique effectively eliminated an isolated rotor blade’'s
‘ flapping instabilities wusing existing control mechanisms. ‘:
Successafully demongtrating this technique on more ‘
!
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-i sophisticated helicopter models would therefore sgserve two
w; purposes: a helicopter’s stability could indeed be improved
.. ° uging modal control; and the modal control technique would be
\ validated on more realistic systems.
”S The first step in pursuing this course of research is to
‘. ° extend the isolated helicopter blade model from considering
;} only flapping motions (42;43) to considering both flapping
-
:ﬁ and lagging motions. Including flap-lag motion introduces
: ¢ not only another degree of freedom to the equations of motion
': but also adds coupling terms to those equations. This more
",
_2 realistic model has been shown to demonstrate a rotor blade’s
,(— instability at lower advance ratios than the simple flap
¥; model. These lower advance ratios may easily fall within the
i performance envelope of a helicopter. Finally, extending the
{ ¢ modal control technique to controlling blade flap-lag motion
’S will demonstrate this theory on a more sophisticated model.
L The control of a helicopter’'s coupled rotor and
G_. longitudinal fuselage motion will then be congidered. The
§ blade will again be modeled as rigid and will have both flap
:§<_ and lag degrees of freedom. Demonsgtrating that the modal
': control technique eliminates instabilities in the coupled
E rotor/fuselage dynamics will indeed improve a helicopter’'s
i: stability in a reliable and efficient manner.
:; In summary, the purpose of this research program |is
‘E twofold. First, the equations of motion for a helicopter
‘5 » blade’'s flap-lag dynamics will be developed. The blade'’'s
':Q stability in hover and in forward flight will be examined
14
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: uging Floquet theory, and the results compared to previous

o gstudies. The pole placement technique will then be used to

E actively control the stability of +the helicopter blade in

E forward flight using existing collective and c¢yclic pitch

: control mechanisms.

¢ Once an isolated rotor blade’'s stability has been
investigated, the equations of motion for the coupled

; rotor/fuselage dynamics will be derived. Using Floquet

.. theory, the stability of the coupled rotor/fuselage system

E will be examined. Finally, control of the system will be

i‘ accomplished with the pole placement technique, as well a=s

q standard feedback control mechanisms.

: The development of the blade flap-lag equationas of

:. motion 18 discussed in Chapter II while Chapter III
highlights the derivation of the coupled rotor/fuselage
equations of motion. The control technique used to eliminate
the helicopter’'s unstable regions is reviewed in Chapter 1IV.

"‘ The results of controlling the blade flap-lag motion |is

E presented in Chapter V, while Chapter VI contains the results
of controlling the helicopter’s coupled rotor/fuselage

¢ motion. Finally, a number of conclusions concerning the
regults obtained are presented in Chapter VII.
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II. Flap-Lag Stability of Helicopter Rotor Blades

Deriving a helicopter’'s equations of motion and
conducting a s8tability analysis on the system is a
challenging venture. The complexity of the helicopter, as
well as the rotor, requires using agssumptions and
approximations which simplify the equations of motion and
make them more manageable. However, care must be taken to
avoid oversimplifying the problem to the exclusion of
important effects.

A logical starting point, in a stability analysgis, is to

derive the equationg of motion of a s8ingle rotor blade in
forward flight and then examine the rotor’'s stability
characteristica. The more complex task of deriving the
equations of motion of the entire helicopter may then be
undertaken once this is accomplished.

The examination of the stability of an igolated
helicopter rotor blade is based on a system of equations of
motion for a rigid blade. The blade is centrally hinged and
free to both flap and lag. The assumptions and approach used

are summarized below.

Blade Dynamics

e An analysis of the various forces and moments acting on

16
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Figure 3. Blade Reference Frames
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(a) Lag Hinge Outboard of Flap Hinge
z z
y y
x
e
-{
x x
(b) Lag Hinge Inboard of Flap Hinge

Figure 4. Hinge Geometry

a helicopter rotor in forward flight may be

several different coordinate aystems. Three

conducted

in

of these

reference frames are quite useful in relating blade motion to

the aerodynamic forces and momeq:f (refer to

4). The frame FI

not rotating with it.
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Y form a dextral set with 2. The X axis is along the
helicopter’s velocity vector when it is in forward flight.
In deriving the equations of motion for an isolated rotor
blade, it is assumed that this frame at most translates with
uniform velocity relative to a fixed space. Hence, FI can be
congidered to be an inertial system.

Frame Fh is also attached to the hub but rotates with @,
the blade azimuth rate. The z axis is coincident with the 2
axig, and the x axisg, which lieg in the X-Y plane, is in the
direction of the rotor blade. The y axis is defined so as to
yield a dextral set.

The final reference frame, Fb' is a blade-fixed frame
with the x axis coincident with the blade feathering axis.
When considering a blade’s flapping and lagging motions it is
necessary to specify the rotation sequence. A flap-lag
rotation igs used when the lag hinge is outboard of the flap
hinge [Figure 4(a)] while a lag-flap rotation is wused when
the lag hinge is inboard of the flap hinge (Figure 4(b)]
(16:877). In Figure 4(a), frame Fb ig found from Fh by a 2-3
rotation through the angles -3 and [. On the other bhand,
Figure 4(b) indicates that Fb is found from Fh by a 3-2
rotation through the angles { and -3. In both situations,
the flap and lag hinges are assumed to be coincident and
located at the rotor shatft. The ¥ and 7 axes form a dextral

gset with x,

The equations of motion used in this study are developed
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. ° assuming a flap-lag hinge sequence (16:877). In addition,

the derivation of the aerodynamic forces is based on linear,

quasgsi-steady strip theory. The induced inflow is wuniform,

NS 9"_.;_. BT S
=

and stall and compressibility are not considered.

Figure 5 shows the relationship between the free stream

-

velocity vector and the inertial coordinate system. The

helicopter’'s forward velocity has magnitude V at an angle of

{ A
B attack o to the X-Y, or disk, plane. The rotor induced
A
%: velocity, V. ig normal to the disk plane, while the advance
:":. ratio &~ and inflow ratio X are dimensionless velocity
- components parallel to and normal to the disk plane,
b respectively. These terms are defined as follows (2:25,28):
. p = Vcosoa/ (RQ) (2.1)
al
-
L~ A = (Vain a - v)/(BO) (2.2)
=
e where R is the blade’'s length.
™. Forward flight introduces a phenomena known as reversed
- flow. The region of reversed flow is an area on the
ai retreating side of the hub plane, near the blade root, where
K-
R 19
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the velocity relative to the blade is directed from the
trailing edge to the leading edge of the blade. Thisg means
that in this region the rotational velocity is smaller in
magnitude than the component of the forward speed, and the
flow is reversed (2:152). Sissingh (8:57) documented three
different types of flow regions a blade encounters: normal ;
reversed; and mixed flow. However, Johnson (2:152) reported
that, for 1low advance ratios, the reversed flow region
occupies only a gmall portion of the rotor disk, and it is
characterized by low dynamic pressure until the advance ratio
becomes large. Since the root cutout typically extends from
15 to 30 percent of the rotor radius, it covers much of the
reversed flow region. Hence, the effects of the reversed
flow region are negligible up to an advance ratio of u = 0.50
(2:152). Because mogt helicopter forward speeds represgent
values of i between O0.30 and 0.40, reversed flow is not
congsidered when deriving the isolated rotor blade’'s equations
of motion (2:152;16:878).

Since the rotation sequence for the rotor blade is flap
followed by lag, the coordinate transformation relating the
blade-fixed axes x, ¥, 2 to ¢the rotating, hub-fixed axise

system x, y, z i=s

x x x
v = LblLlh y = Lbh y (2.3)
4y Zlh o Y
where
20
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N
N cos{ 8in{ O cosf3 O ainf3
A}

3 Ly, = |-8in{ co8{ 0| ; L;, = 0
"', bl 0 (1] 1 lh -g8in3 O cosf3

® Lagrange’s equations (45:66-76). To this end, the

kinetic and potential energies must be calculated.
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(2.4)

and the subscript 1 denotegs an intermediate axis system.
The blade equations of motion are formulated using

sygtem’'s

In the blade-fixed reference frame, the pogition vector
® of an arbitrary point mass on the blade is simply the
spanwise position of the element:
r
€ {p} = lo (2.5)
: b 0
~
: where r is the radial location of a point on the blade.
e
x Agsuming a flat and nonrotating earth, the angular
: velocity of the blade-fixed axis system with respect to the
n inertial system is
o
-b/1 - s -
or, expressed in blade~fixed coordinates,
0 0 0
b/1 _ _
{w }b = Lbh (4] + Lbl 3 + 9 (2.7)
s Un 0l Kl
[
" Simplifying Eq (2.7) results in the following:
QsBcl - (8C
{wbll} = |-qspsl - ficl (2.8)
b Qe + f
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where 832 = 8inf3, ¢ = cos3, 8{ = ain{, and cf = cosl.
Now, if a and b are any two vectors in the same dextral

frame, the components of the vector product a x b may be

found trom [a]{v] . where

~ 3 2
[a] = a, 0 -a, (2.9)
-a, a, 0
In order to determine the system’s kinetic energy, the

derivative of the position vector as seen by an observer in
the inertial frame is required. This derivative, expressed

in the blade-fixed axis system, can be written as(45:50):

# - © B, -

However, {?b} . the derivative of the pogition vector
b

seen by an observer fixed in the blade-fixed reference frame,

is zero. Hence,

o

{bl} = r(f + Qcosf3) (2.11)
b

r(bcos( - Qainf3ginl) b

The kinetic energy of a single blade is given by

3 (6 ) wm

where p.l is the dengity of the point mass.

The system’'s potential energy is
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r

vV = knﬁzlz + k(Cz/2 (2.13)

Y Yy, E SN -
) -}7'.' j- % 'rr‘- *

@ with kﬁ and k( being the spring rates about the flap and lag
-
?ﬂ hinges, respectively. Note that the gravity potential is=s
‘*l

. ignored.
W,
s ® Since the Lagrangian, L, is defined as L =T - V ;
o solving the expressions for the system's kinetic energy, and
2 combining this result with the potential energy of the system
o yields the following:
.‘
w L = %1 [&2+f?zcosz(+nz [coszf?winzﬁsinz(]
7 : : 1, 2 1, .2

: +2Q3sinfsinl{cosl +2Q con3| - —kﬁﬁ - k.0 (2.14)

c 2 27

(]

where, agssuming a thin blade, the blade's mass moment of
inertia for both flap and lag motions are equal and can be
1 K approximated as
o
" R
- 2

” 1= J- F ppdr (2.15)
K 4]

rJ
L

g Meirovitch (45:72-76,88-91) derived Lagrange’'s equations
f: for a system with both consgervative and nonconservative
K

{ forces:
K (&) -5k =q  k=1.2,....n (2.16)
k- aq Iy

N k
‘g

qe where q, are generalized coordinates and Qk are generalized,
£
. non-conservative forces.
L)
4
:- The generalized forces include both the aerodynamic
¥

gc forces acting on the rotor blade and +the forcesg resulting
&

v 23
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from the torsional dampers gsituated along the hinge line.

Thus,
Qk = -cﬁﬁ - c(C + Qk (2.17)

where cﬁ and c( are the viscous damping coefficients in flap

and lag, respectively, and Qk are the generalized aerodynamic

forces.

-
\»
o
tr
-
E.
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'L\
E
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Y
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If the angles 3 and { are assumed to be gsmall and terms
through second order are retained (16:878), Lagrange's

equationg of motion can be obtained:

" . . z [
B+ 20(B v o BT 4 En N kﬁll]ﬁ X% (2.18)
[ - 2083 + ctt/z + kL/1 = Q./1 (2.19)

4

’ ’

3 and QC are generalized aerodynamic forces.

The azimuth angle, yw, is given by y = Qt . Hence, the

where Q

equations of motion can be differentiated with respect to the

azimuth, resulting in

” 1[4 ’ 2 ’ z
= Q .
R+ 20 3 + zptﬁﬁ + pf Q(g’( I) (2.20)
¢ -2 z((a((' + Bz( = o;/(nzx) (2.21)
where: p. the dimensionless rotating flapping natural
frequency, is 1 + ;; 3 52 and w(. the nondimensional

nonrotating flapping and lagging natural frequencies, are

kn/(n?I) and kc/(nzl) . respectively; and [, and (., the

flap and lag viscous damping ratios, are o,/ (21I0p) and

€]
c(/(zlo&() ., regspectively.
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Figure 6. Aerodynamic Velocity Components

Rotor Aerodynamic Forces

To completely derive the bUblade flap-lag equations of
motion, the aerodynamic forces must be determined. Consgider
the velocity components seen by a rotating blade while the
helicopter is in forward flight. The helicopter has forward
velocity V and a blade section angle of attack ao. From
Figure 6 it is apparent that the component of the
helicopter’'s velocity in the hub plane is Vecosa or u(R.

Congsequently, the flow relative to the blade can be

expregsed as

_ Vcosoacosy HORcosy
VA = |-Vcosaginy = 1-ufiRsiny (2.22)
Vsina-ué AQR
h h

where the point A is fixed to the hub but rotates through an

azimuth angle y. The induced velocity, v is

‘I
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2
v, = C_OB/ [2 [u +7\2]”’] (2.23)
8
® and the inflow ratio can be expressed as
. c.
N A = ptana - (2.24)
- 2[“2*)\2]1/2
N
o
' R
g with CT being the thrust coefficient.
?{ The expression for the total velocity of a blade mass
o
". element is the sum of the aerodynamic and dynamic components
N (16:878), or
A V=V * (2.25)
\e_
’ where V = {pl}
b, dm .
. b
' It is cugstomary to express this velocity in
. | dimensionless radial, tangential, and perpendicular
,.: components as Un, U'r' and Ur' respectively. Hence, in the
o
}: blade-fixed frame [following the orientation used by Kaza and
W
po Kvaternik (16:879)1],
).
f v, HORcflclcy - uQRs{sy + AQRsfcl
:: UT = r(’ + rQef3 + uQRefRslcy + uQRelay + AQORsf3al (2.26)
s . -
e Ur b r3cl + rQapasl + uQRaflcy AQRef? b
;l'
':E where cy = cosy and ay = siny.
j The total velocity of the air mags is8 now written in
k terms of the blade-fixed axis system. Further, the relative
)
:: angle of attack can be easnily defined, and blade element
theory can be used +to calculate the section aerodynamic
e ¢ forces (2:45-51:;3:1:46). This theory agsumes each blade
26
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Figure 7. Blade Section Aerodynamics

section acts ag a two-dimensional airfoil, and the induced
velocity at the section accounts for the influence of the
rotor wake. Thus, two-dimensional airfoil characteristics
can be used to evaluate the section loads in terms of the
blade motion and the aerodynamic forces.

From Figure 7 the resultant velocity, U, and the inflow
angle, ¢, of the section are g = [Ui+0i]”q and ¢ =
tan-‘[UP/UT] . The blade section pitch 8 is measured from
the reference plane to the zero-1ift line; it includes the

collective, cyclic cosine, and cyclic sine pitch angles, 6

ac, € , ag well as the blade's built-in twist (2:168-169).

8
Thus, the section angle of attack can now be expressed in

terms of the pitch and inflow angles as
-1
a=86-¢-= 60 - eccosw Gssinw tan EUP/UT] (2.27)

For an elemental section of length, dr, the 1lift and
drag forces can be expressed in terms of elemental components

ag (5:130-135;16:879)
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dL

1 .2
Epu ccldr (2.28)

dD

%pUchddr (2.29)

where ¢ is the section chord and p is the air mass density.

The 1ift and drag coefficients, Ct and Cd. are, in
general, functiong of the section angle of attack > 8
Defining the two-dimensional lift curve slope as a = Ct/a

Eqs (2.28) and (2.29) can be rewritten as

dL = %pacUzadr (2.30)
1 2
dD = EpacU [Cd/a]dr (2.31)

The components of these aerodynamic forces resolved into

the blade-fixed reference frame are Fx, F and F: (radial,

yi
in-plane, and normal forces, respectively) (2:170):

Fx BF3
Fy = |-dLgin¢ - dDcos¢ (2.32)
FJ dLcos® - dDsing

where the radial component can be neglected (16:879).
Combining Eqs (2.30), (2.31), and (2.32) results in the
following equations describing the elemental components of
the aerodynamic forces, expressed in the blade axis aystem:
dF 1 -aUUP - (cd/a)UUT

Vi = zoac dr (2.33)

sz aUUT - (Cd/a)UUP

Expressing these forces in the inertial reference system

oY -:*-’ N
[

L)
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. dF -cosf3gin{dF -
: X Asin{dF_ - sinfidF
. dFY = coa(dFy (2.34)
( A dF -ginfain{dF_ + cosf3dF
y Z fsin{ 9 3 2
.
. Uaing the principle of virtual work, the generalized
'. forces in Eq (2.17) that are associated with the above
\
S aerodynamic forces have the form (16:879;48:60,72-79)
k-
- ’ [~ . . . -
: Q, - de"a—.{pI} + dFy"o—_{pI} + dF -‘-’f{pl} (2.35)
Y L a3 b a3 b ? ap b
9 Q = dpxea‘_{b } + dF 2 } + dF °a—_{[ol} (2.36)
. : at ¥ o at b-
A
) By taking the partial derivative of the velocity vector
EI with respect to ﬁ and f. and integrating the elemental
5 p aerodynamic forces over the length of the rotor blade, the
l ’ L4
i: generalized aerodynamic forces Qﬂ and Q( may be obtained:
2
0 R
9 R ~
- = rcos{dF .37
§o % = | [dF (2.37)
- (]
- R
N = F )
N Q( ] rd v (2.38)
- 0
‘t
6 Thus, the blade flap-lag equationg of motion can be
; written as
3
. R
N ﬁ"+2('ﬁ+2 4 '+ zﬁ = |_Pac alU_-|C./7a |00 |cos{dr (2.39)
A P Bﬁ P 2071 r T d P -
.
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Blade Trim and Perturbation Equations

A helicopter blade’'s atability can be evaluated by
establishing its steady-state equilibrium, or trim, solution
and then perturbing the blade’s nonlinear equations of motion
about the trim values (15:5-8). The steady-state flap and

lag motiona are described by a Fourier series as:

() ﬁo + Blccosw + ﬁlsainw + H.O.T. (2.41)

1

[ (y) (o + (lccosw + (lssinw + H.O.T. (2.42)

The trim sdolution s8ought is not a constant but a
periodic solution. Eqs (2.41) and (2.42) are used to
construct this “trim” solution. Usually, harmonics above the
firat order are very small and may be neglected (2:157). The
Bo term is a coning motion about the hub, while the harmonics
ﬁlc and ﬁls generate once-per-revolution variations of the
flap angle. (o is the blade’'s mean lag angle relative to the
rotor hub. The harmonic (lc produces a lateral shift of the
blade in the plane of rotation and a lateral shift in the
rotor’'s center of gravity. Similarly, (la produces a
longitudinal shift of the blade and a longitudinal shift in
the rotor’'s center of gravity (2:156-158).

The blade’'s pitch motion can also be represented as a

30
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Fourier geries:
S(y) = 60 - eccoaw - Bgsinw (2.43)

where the barmonics higher than firgt order are again
neglected. The zeroth harmonic, 60, is the average Dblade
pitch and is called the collective pitch. The once-per-
revolution variations in the pitch angle, ec and 63, are
called the cyclic pitch angles. Collective pitch controls
the rotor thrust magnitude while cyclic pitch controls the
thrust vector orientation (Bc controlsa the lateral
orientation while 68 controle the 1longitudinal orientation)
(2:158-159;3) .

Denoting the steady-state valueg of 2 and [ as Bo and Co

and the perturbations from equilibrium as A/ and AL, then
3= Bo + ApR ; L =0 + Af (2.44)

If the above equations are substituted into the
nonlinear equations of motion [Eqs (2.20) and (2.21)], and if
the perturbations are assumed to be gmall enough to neglect

terms that are second order and higher, two sets of equations

result:
3, = Q}’o/ [Q’I] (2.45)
:,;:o = Q;,o/ [021] (2.46)
A"+ 20 AL+ 2p(ﬂm' + P°AR = 8Qy [n’r] (2.47)
A"~ 2p_ap o+ 2((5(.&' + Gpar = Aotx[n’x] (2.48)
31




Eqs (2.45) and (2.46) are the flap and lag equations
defining the trim conditions Bo and Co while Eqs (2.47) and
(2.48) are the linear perturbation equations involving A3 and
Al (16:879-880).

Now, trim requires force and moment equilibrium on the
blade. The rotor is maintained at a fixed value of thrust

coefficient, Cr' This coefficient can be defined as

c,. = —m— (2.49)

For simplicity, ﬁo ig assumed to be gmall, the
steady-state cyclic lagging angles ((lc and Els) are assgumed

to be zero, (o is neglected, and [UP /Ur ] is assumed to Dbe
o

[o]
much less than one [or tan™' [U /0 ] x [UP /0, ] ] The
PO [o] [ o] o]

first harmonic flapping angies, defined in Eq (2.41), are
8till considered.

With a constant thrust coefficient, vertical and
horizontal force equilibrium (refer to Figure 6) can be

expressed as

(2.50)

[}
(=]

D + H cosa + T sina
P o o

T cosa (2.51)
o

2

where the aerodynamic forces are as follows:

To. the thrust, is normal to the hub-plane and is given by

27 R
N
To = an J I szodw (2.52)
o O
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H , the rotor drag force in the hub-plane, is

27 R

N
Ho = an J J [de cogy - dFY sinw]dw (2.53)
o o o o

D_, the helicopter parasite drag, is
D_ = %pvzf (2.54)

where f is the parasite drag airea, N is the number of

helicopter blades, m is the rotor blade's mass, and de .
]

dFY . and sz are the steady-state values obtained from Eq
o o

(2.34).

The steady-state values for the thrust and rotor drag

forces can now be calculated:

a2
_ NpacR Q 2 2] _ C
v - MEacR O L6°[3 . u] ue_ + x[l +a—d]] (2.855)
Noack’Q? [ (c 1 1
B = 2= u[;d - xeo] - CIR R (2.56)

Defining the blade Lock number ag )y = pacR‘/I and the
rotor solidity to be o = Nc/(nR) , the thrust coefficient,

C, and H become
T o

- 8o 2 2] _ c
c. = ._4[90 [3 + U ] Hes + )\[1 + ;d]] (2.57)
yo’1in| (c 1 1
no = __4_ M [;d - xeo] + Eﬂoec + -2—)\6. (2 .58)

Trim also requires rotor pitching and rolling moment
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equilibrium; the rolling moment, Ix » and pitching moment,
o

Iy , on the rotor hub are:

o
2t R

_ N

Ixo = an I I rsinwdF;gw (2.59)
0 O
2n R

= . N

-y = o I j rcoswdFjdw (2.60)
o o o o

where sz is the steady-state normal blade axis component of
o

the aerodynamic forces [Eq (2.32)]). Expanding these two

moment equations yields

2 -
_ rQ IN|2 1,3 2)_ CY(L2, _ 1

"xo" 3 Lfs‘“eo 63[4*5“] [l+;d][§“ﬁlc E“"]] (2.61)

2l 12 C.I(1 2 1
IYO = = ec[z + Ep ] + [1 + ;d][ay ﬁls + Suﬁo] (2.62)
L
However, in equilibrium, lx = Iy = 0. Congsequently,
] o

expressiona for the cyclic pitch, Gc and 68. can be derived
from Eqs (2.61) and (2.62) such that the first bharmonic
flapping coefficients ﬁlc and ﬁls are asuppressed (16:880).

These are:

_ .1 cC, L, 12

ec = suﬁo[l + ;d]/[4 + g ] (2.63)
_ 12 1 c 1 32

98 [suec + iyk[l + ;d]]/[I + aH ] (2.64)

The trim equations [Eqs (2.45) and (2.46)]1 require

L]

computing the equilibrium generalized aerodynamic forces Q

B

[+]
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L'v
and Q( . Using Eqa (2.37) and (2.38), these equilibrium !
o !
|
q forces are “
e |
A g
- ):4 2 |
X Q, = | rcostaF_ = ¥2llle [14.2] - Lo + Li[1+Ca (2.65)
IE] ) 2 |14 3 8 3 |
\ ° 0 ° !
y & |
§ R 2
_ _ a1 12, 1 _ 1 _ 1 _ L2 ;
. Q( - J rdpy 2 [90[4 Bo Sk] 4K”es "% ™
. o o l
N 4]
T c 2 ! 1 1 2 2 C
) rqaa107) + sime{-fre, - re, ¢ e, Bl
-
- 12 1 1
- + cosw{gu Boes - gxec + p{io [k+36°]} (2.66)
1
. The complete s8set of trim conditions have now been
b defined. Remembering that (o' tlc' and (ls are all assumed
r |
e to be zero and Blc and ﬁls are suppressed, the various trim
. equations can be used to solve for the remaining unknowns,

K, (?o, 60, ec. 88. and A. The equations required to determine
R~

these unknowns can be summarized ag follows (noting that, due

@
P to the assumptions used, several of the equations derived
': earlier are either redundant or identically satisfied):
[)
o A = [[-u2+{u‘+c:}’/2]/2]”2 (2.67)
‘
K y 1 2 1 c
] = -
“ ﬂo 2p2 [ie [l + M ] :—s-esu + ik[l + ;—d]] (2.68)
¢
L)
. 3[:—2-1'& + Syj - k[l + gd][2 - “2]]
: eo = 232 2 (2.69) !
[ - o] s
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E I 1 C 1 3 2
§ 6s = [sueo + Eux[l + Ed]]/[I + e ] (2.70)
¢ = 1 Y 1 12

] ec E,‘-ufi [1 + d}/ ry + M (2.71)
0
ﬁ Note that the following equilibrium parameters are
n

2 independent: u; A; o; CT; and cd. For this analysis all of

these varjables, except ., are constrained to specific values
80 that the trim conditions at various.forward velocitiesg may
be calculated.

The steady-state equilibrium terms appearing in the
perturbation equations of motion, Eqs (2.47) and (2.48), have

now been determined. However, before thegse equations can be

solved, the perturbed aerodynamic forces, AQﬁ and AQ(. must
be evaluated.
Perturbing the generalized aerodynamic forces (Eqs
(2.37) and (2.38)1] by AQﬁ and AQ( yields
R
AQﬁ = J [rcos(oA(sz) - rsin(oA(dF2o] (2.72)
o
R
= A .
AQ( ] r (dFv) (2.73)
0

where the perturbed values of the elemental forces dFy and
dF? are obtained by a Taylor series expansion about the

gsteady-state equilibrium condition (16:880):

dF = dF  +A(dF ;
y = 4Fy OUR) |

o sz:( ﬁﬂﬂﬁ zﬁsaf\b4§?55
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O(dFy) 0(dFy)
= dF + 20 AUP + . [ AUT + HO.T. (2.74)
[o] P o T o
dF_= dF_ +A
2 d 2 (dFi)
o
a(dFj) a(dFJ)
= dF; + T[I—-— AUP + GU_ AUT + H.O.T. (2.75)
o P o T o

Neglecting the higher order terms, assuming (Cd/a) « 1
[or [?d/a - 1] = -1] . and expanding the partial derivatives
in the above equations leads to the following expressions for

the perturbed values of the elemental aerodynamic forces

(16:880)
_ 1 _ C
A(dFy) = Epac[{éUT ZUP }AUP+{GUP + 2[;d]UT }AUT]dr (2.7868)
o o o o
1
A(dF3) = Epac[—UToAUP+{?BUTO* UPO}AUT]dr (2.77)

where € is defined by Eq (2.43).
Notice that Eqs (2.76) and (2.77) contain steady-state
and perturbed values for the velocity components Up and UT.

Evaluating the expresgions in Eq (2.26) at the trim condition

yields the steady-state equilibrium values

v, - m[—x + uﬁocosw] . LB (2.78)

UTo = rd + Ruﬂ[sinw + Cocosw] + RAQﬁo(o (2.79)

and perturbing the expressions about the equilibrium yields
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AU = roAB + rQEBOAK . (oan] . nQAﬁ[Kﬁo . ucozw] (2.80)
»‘. - ’ -
AU_ = rOAL - rOB_AB + nm[ﬁoac . coAn]
b
' + RpQ[A(cosw - (oACainw - ﬁo(oAﬁcosw] (2.81)
L/
Thad With the expressgions for the perturbed values of the

aerodynamic forces now defined, the perturbed blade flap-lag
equations of motion [Eqs (2.47) and (2.48)] have been formed.
® These equations® are ordinary linear differential equations

A with periodic coefficients.

Verification of the Blade Flap-Lag Equations of Motion

For convenience, the equations of motion can be written

}‘ o in the form
: L[4
x (@) = A(Y)Ix(y) (2.82)

® where A(y) is periodic with period 2mn and the state vector

x(w) is defined to be:

) R R T
. X = [Aﬁ.Ac.An.Az ] (2.83)

Hence, the periodic matrix A(y) of Eq (2.82) has the

form:
'1(
4 0 0 1 ()
0 0 0 1
Ay, a5, 854 as. (2.84)

¢ 241 %42 %43 %44
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s T %ﬁo - %(o ' gﬁo(ocosw
® cg = %Bo - %{o + gﬁo(ocosw (2.86)
Cg = giny + C0608W
s Cy = A - uﬁocoaw
s % * %ce * %ﬁoco
. cg = xﬁo + ucosy - p(osinw
€10 ° % * %06 * %ﬁo(o
Now that the periodic gstate matrix A(y) i= known, blade
K

stability regions can be determined. The stability
boundaries generated are based on the assumption that the
blade has damping along the hinge line. The validity of the
current model to accurately predict stability regions is
verified by comparing the results with those obtained from
published studies (15;16). In generating numerical
solutions, Kaza and Kvaternik (16) made several assumptions;
these assumptions are also used for this study. For example,

the trim angle of attack, a, the parasite drag coefficient,

K,
cd , and the horizontal force coefficient, c". are all set to
P
zero. In addition, the following terms are set to fixed
values:
L
vy =8
o = 0.05
X, (2.87)
CT = cd = 0.01
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Stability boundaries are obtained using Floquet theory.
The state transition matrix is determined numerically and
evaluated at the end of one period. The eigenvalues of this
monodromy matrix are the system’'s characteristic multipliers.
System stability is assured if all of theae characteristic
multipliers have a magnitude of less than one.

Several different methods can be used to numerically
integrate an isolated rotor blade’'s equations of motion.
Gaonkar, Simha Prasad, and Sastry (47) performed a sgtability
analygis of a rotor modeled as a system with periodic
coefficients and presented computer-generated data on the
comparative efficiency of four classes of solution
procedures: Runge-Kutta one-step; Hamming's predictor
corrector; Bulirsch-Stoer extrapolation; and a hybrid or
variable-order method which embodied the special features of
one-gtep and multistep methods, such as the Gear type and the
Shampine-Gordon type. It was determined that Hamming's
fourth-order predictor corrector method wag the most
economical with respect to three-digit accuracy. Thisg method
evaluated the equationg of motion twice per integration step,
as compared to four or more times when other methods, such as
Runge-Kutta, were used (7:27;48:100-101). Consequently, for
this study, Hamming's modified predictor corrector method is
used to numerically integrate the equations of motion for one

period.
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The curves presented in Figures 8 and 9 are stability

boundaries as a function of p, the rotating flapping natural
frequency, and 5(. the nonrotating lagging natural frequency.
Figure 8, which illustrates blade flap-lag =stability 1in
hover, compares quite well with the results presented in Kaza
and Kvaternik (16:881). The general size and shape of the
curves are gimilar, with small differences resulting from the
fact that Kaza and Kvaternik set the value of 90 to be the
critical collective pitch angle, above which the blade
becomes unstable. They determined this value to be 0.40. On
the other hand, the present study used Eq (2.69) to calculate
the trim value for 60, which turned out to be 0.29722. In
addition, Kaza and Kvaternik did not specifically state that
the steady-state mean lag angle, [ , was zero when they

o

generated the p versus 5( curve for hover. Because Co wasg
assumed to be zero for the remainder of the curves they
presented, the current research effort used the same
aggsumption, even for the hover case. It (o were indeed a
value other than zero, the two curves would differ. Still,
both sets of data appear to be in close enough agreement to
asgume that the present model's results are valid in hover.
Although Kaza and Kvaternik (16) presented a stability
curve for a flap-lag hinge sequence at u = 0.40, this curve
wag constructed using an approximate method of solution.
Even so, the authors concluded that there was close agreement
between the resgults using both the approximate method and

Floquet theory for iy = 0.40 for the lag-flap hinge sequence.
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The results presented in Figure 9 are in very close agreement
with Kaza and Kvaternik's results using the approximate
method. Hence, it can be concluded that the present study's
results for u = 0.40 accurately compare with previous
gtudies.

Because the solution to the blade flap-lag equations of
motion was found to be well-behaved throughout the region of
0.00 £ 14 = 0.50 it was assumed that the derivation of the
equations, as well as the assumptions used, were consistent
and compared well with previous efforts. Therefore, it was
concluded that the solution to the rotor blade's equations of
motion were verified and considered accurate enough to be

used throughout the remainder of this study.
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ITI. Stability of a Coupled Rotor/Fuselage System

Chapter II summarized the development of the equations

'.’ of motion for an isolated blade experiencing flap-lag motion.

With this information available, congsider now the equations

of motion for the entire helicopter. These equations are

|
® derived in order to investigate the stability of the coupled
rotor/rigid body equations of motion. The assumptions and

approximations used are summarized below.

IR PN Yt i
ot

Dynamics

r
%
W
b

)

In free flight, the helicopter bhas 8ix rigid body

degrees of freedom; namely, three rotation (yaw, pitch, and
roll), and three position (vertical, lateral, and
longitudinal) components. It is customary to split the &ix

degreeas of freedom of a helicopter into two groups of three

each and agssume their dynamice can be analyzed separately

(2:822;49) . The first group contains the lateral
dynamicg--lateral velocity, roll attitude, and yaw
rate--while the other consiats of the longitudinal

dynamicgs--longitudinal velocity, pitch attitude, and vertical
velocity.
Since the rotor is a major factor in the helicopter’'s

stability analysia, the rotor's motion must also be modeled.
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For a rigid hinged rotor, this requires three additional
degrees of freedom for each blade; namely, flap, lag, and
pitch components. For this study, pitch is used for control
while flap and lag are free variables.

As with analyzing the isolated blade’'s equationas of
motion, an analysgis of the helicopter’'s equations of motion
requires the establishment of several sets of coordinate
frames. The inertial reference frame, X, Y, Z, i8 fixed to a
flat, non-rotating earth. Further, the wind axes are defined

with the x_ axis being along the free stream velocity, the z

axis in the plane of symmetry when one exists and nominally
pointing down, and Yw forming a dextral gset. The free gtream

velocity is then expressed in the wind axes as

v
{v} - lo (3.1
w 0

Another reference frame used, the vehicle carried frame,

Fv, ig the same as the inertial frame when the earth 1is

assumed to be flat and non-rotating. This axis system is=s

denoted as x and z The helicopter’'s body axes are

v Yy v
related to those of Fv via a gset of Euler angle rotations
through the angles v (yaw), & (pitch), and ¢ (roll). This

gset of three independent rotations involves first rotating an

amount yw about z_ to produce an intermediate set of axes x

v 1°

Yy z,. followed by a rotation through an angle & about Yy

carrying the axes to a second axis set x and

2' yzl zzl
through an angle ¢ to yield the

finally a rotation about x2
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body axes xB. y . z_.

B B
aB/V
and
cdcy
LBv = spadcy -
cpadcy +
where cpy = cosyp, 8p =
and sy = siny.
The

Thus,

= pi, + 9;1 + yh

cpsy
spgy

gsing,

v

cday
8898y + cpcy
cpsdgy - spcy

c8® = cos®, s

(3.2)
-89
apcd (3.3)
cpc?d
8in®, cy = cosy,

wind axis system may be oriented with respect to the

body axes by means of the aerodynamic angles o and /3:

DRl A W,

v} - L {v} (3.4)
{v}, = veul"},
-B/W - ~
where = Qg Bkw and
cosf3icogsa -ginfigina -gina
LBW = sinﬁ cgsﬁ 0 (3.5)
cogf3gina -ginfigina cosa

Note that o, the helicopter's angle of attack, and 3,
the sideslip angle, can be written as (50:10-11):

a = tan-ifw/u] : B = sin-i[v/V] (3.6)
where u, v, and w are the components of the velocity along
the body axes.

To accurately model a helicopter, its rotors must be
analyrzed. The helicopter considered possesses a single main
rotor, ag well as a tail rotor. The main rotor is aggumed to

48
O A O L e o S o W e S D
y L 5 Y. NV A, s 'y O, R L




?‘S" TTETE YA TR TN T RN TRV VLW TR TR T ARSI R AR R R l‘v‘w‘vwmmw'vw“w"(iu“ru"wv'wvv‘\v\1u'\wwm“—v-n“-xruT

be directly over the helicopter’s center of mass and provides
lift, propulsive force, and roll, pitch, and vertical control
for the helicopter (2:9). The tail rotor balances the main
rotor torque as well as provides the helicopter’s yaw control
(2:9,264:;5:93). When the main rotor is attached +to the
helicopter’s body, the hub-fixed rotating axis system, used
in deriving an isolated rotor blade's equations of motion,
can be oriented with respect to the helicopter body axeg by a
shaft angle of attack am (positive for a rearward tilt from
the horizontal) and a shaft cant angle ¢m (pogitive to the
right) (51:187). Denoting the subscript m for the main
rotor, this orientation can be expressed with the following

matrix:

-c& (] a8x
m m

LBm = sama¢m c¢m cams¢m (3.7)

—samc¢m s¢m -camc¢
In a gimilar manner, the orientation of a tail rotor can
be specified by a shaft cant angle ¢t (positive for an upward
tilt, as measured from the vertical) and a shaft angle of
attack o, (positive rearward). Note that the subscript +t

t
denotes the tail rotor. In addition, the definition of the

tail rotor hub axes dependgs on the main rotor’'s rotation }
direction. A counterclockwisge rotating main rotor requires
the tail rotor’'s thrust to be in the direction of Ya while
clockwigse rotation requires the thrust to be in the opposgite

direction (51:187). If Am= 1 represents a counterclockwise
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i' rotating main rotor and An = -1 denotesg a clockwise rotating
L)
N main rotor, the tail rotor's hub axes can be related to the
e

1 body axes by
.: cat A c¢t & s¢tsat

; LBt = 0 go, Amc¢t (3.8)
\ w -soy Am°¢tcat -a¢tcat
Y, Agguming neither the main nor the tail rotors have shatt
; angles of attack and cant angles, and the main rotor rotates

L
- in a counterclockwise direction, LBm and LBt are ag follows:
N -1 0 o0 -1 0 o0
N
) = . =
. LBm 0 1 © ; LBt 0 o 1 (3.9)
\ 0O o0 -1 0 1 o
2 Since the earth iz asgsumed to be flat and nonrotating,
{“ the angular velocity of the body axis system with respect to
] the inertial frame is 53/1 = anlv, where GB/V is the angular
J velocity of the body frame with regspect to the vehicle
‘j. carried frame. Denoting the body axis components of the
g body's angular velocity with respect to inertial space as p,
: q, and r, Eq (3.2) can be written as
& P p - yad
¢ {wB/I} = q = écp + @c&sp (3.10)
j r |g yopcd® - fap B
S

i or

) p 1 sptan® cptan® P
g 8 =|o ce -gp q (3.11)
¢ ') B 0 spsec?d cpsec?d B r B
b
i 50
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Eq (3.11) expresses the kinematics in the body axis
system.

To aid in deriving the helicopter’s equations of motion,
the following terms need to be defined: B denotes the entire
helicopter, to include both the main and tail rotor; Bl
denotes only the helicopter’s airframe and horizontal tail
(the main and tail rotors are excluded). It should be noted
that the airframe includeg not only the helicopter’'s body but
also the vertical tail assembly, to which the tail rotor and
horizontal tail are attached.

The equations of motion for the helicopter are
-1

F = ma H = (M_) (3.12)
ext cm cm cm ext

‘. where Ee the total external force acting on the body, is=s

xt'
Foxt = Faero * Fam * Frp * Medy (3.13)
o Faero represents the aeronautical forces acting on Bl’ FIR
and ETR include the external forces acting on the main and

tail rotors, respectively, and lgiv is the weight force. In
addition, M is the helicopter’s total mass, including the
main and tail rotors, and ;cm' the inertial acceleration of

the helicopter’'s mass center, can be expressed as

I- W-
- _d _d -W/1_ =
a.. = dt - dt + w x V (3.14)
where 5'/1 = 5W/B + QB/I .

g (, ﬁim is the inertial rate of change of the helicopter's
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angular momentum about its mass center, and includes the
S | =1
angular nomen?un of Bl [ HB]' the main rotor [ HIB]' and the

tail rotor [ ﬁ;R]' Finally, (icm)ext' the total external

moment acting on the helicopter, includes the terms iaero

iIB + iTR ., where laero iIR' and iTR are the moments acting

on Bl' the main rotor, and the tail rotor, respectively.
Flap and lag contributions to the equations of motion
for B1 should be considered in this analysis. The

contributions to the force equations are of the order of m/M;

hence, they can be neglected. Each blade's flap and lag
motions do, however, produce coupling effects on the
airframe’'s moment equations. For the present, the moment

equations will be derived ignoring any contributions from the
flap and lag motions. Later in the chapter, the coupling
between the body and the blades will be addressed.

Figure 10 summarizes the forces and moments acting on
the helicopter (2:777). The notation used in this figure |is=s

as follows: x z_ are the body axes; t , t

B' YB' %B x' Cy’

distances from the center of mass (c.m.) to the tail rotor's

t are the
z

hub; lz is the vertical distance from the c.m. to the main

rotor’'s hub; 7*, 72 are the distances from the c.m. to the

horizontal tail; T , H , Y , D are the main rotor’s thrust,
m m m P

longitudinal (drag) force, s8side force, and parasite drag

C
force, regpectively; Tt' Ht' Yt are the tail rotor’'s thrust,
longitudinal force, and side force, respectively; IB. Iy .
m
2
ir ly are the Bl. main rotor, and tail rotor pitching moments,
4 t
.
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Figure 10. Helicopter Forces and Moments

are the horizontal tail’'s 1lift and drag

Tl
and LB' DB' YB are the 1lift, drag, and side forces
1 through the helicopter’'s center of mass.
in matrix form, Eq (3.14) can be written as
v v
{acm} = 0 + [wW/I] 0 (3.15)
w w
0 ly 0 Jy
Expressed in body axes, Eq (3.15) becomes
v v
W/ I
{acm} = LBW 0 + [ ] LBw 0 (3.16)
B o B 0
w w
From Figure 10, the external forces are
T H +D cosa t
{Faero} { IB} { TB} t (3.17)
T +D sina t &

e

S T A
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Collecting terms, Eq (3.12) yields the force equation
o v
_ aero MR TR
Lpw| © | = an{F ] } *Lpm) M } ”‘Bt{Fu }
0 w w m t
® 1] v
~“W/1
*LBV 0 -[w ] LBw 0 (3.18)
B
gly Oly
'@ Developing the moment equations for the entire
helicopter requires calculating the contributions from B1 as
well as the main and tail rotors. The inertial rate of
e change of the helicopter body's (Bl) angular momentum about

the mass center ig expressed as

. i; - ﬁg . [;B/I]B{HB}B (3.19)

where {HB}B = [IC]B{éB/I}B . Now, the moment of inertia,

[Ic] , ig about the helicopter’'s center of gravity and
B

includesg not only the body terms but algso the terms for the

\ main and tail rotors:

: [te], = [s], * [oa], * [7es],

| Assuming the helicopter’'s airframe, excluding the
\

o rotors, is symmetrical in the szB plane, the moment of
|

l inertia for B, is given by

|

|

|

'®
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) | 0 I
xx Xz
I = 0 1 (] (3.21)
[1a) vy
1 0 1
xZ zz<B
where the moments of inertia I . I , and 1 are about the
XX yy zZ

body’'s roll, pitch, and yaw axes, respectively.
The moment of inertia for the main rotor must also be
expregssed in the body axis system using the parallel axis

theorem (52:297-298):

o
0 (3.22)
o

where m is the mass of one of the main rotor’s blades and Nm
is the number of bladesg on the rotor. Note the primed term
on the right-hand side of Eq (3.22). Since each blade does
not pass through the origin of the body axig system, a term
denoting an isolated blade’'s moment of inertia, expressed in
an axis system which passes through the mass center of the
blade, must be calculated. Now, Eq (2.15) provides the
expression for an isolated blade’s moment of inertia in the

blade-fixed reference frame, and can be restated as follows:

00 O
[IIB]b = |0 Im o (3.23)
00 O b
where I. is defined to be:
m
2
Iln = Ir-p-dr- (3.24)
0
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Here, Bn ig the main rotor’s radius, ro ia the radial
location on the main rotor, and p“I ig the main rotor blade's
magss density.

The term in Eq (3.23) must now be expressed in the body
axis gystem. First, Eq (3.23) needs to be oriented in the
rotating hub-fixed reference frame uging the matrices found
in Eq (2.4). 1In this situation, Lbl remains the same, and

Llh can be redefined as le. The moment of inertia for an
igolated blade can now be expressed in the hub-fixed rotating

system:

[I.B]m = Lnlle[IIB]bLblle (3.25)

T T
where Lml = [LIEJ and le = [Lbl] .

Finally, Eq (3.25) can be expressed in the body-fixed

reference frame:

’

). = “om[ta] e (3.2

Similarly, the expression for the tail rotor’'s moment of

inertia, in terms of the body axis system, may be derived:

(t2+t?) -t ¢ -t t
g y =z X x z
[ITR]B = 't[lrn]n s Mem | -t (elee)) -:yt (3.27)
-t t 4t (b4t
X =z y z x y 4B

where m, is the mass of a single blade on the tail rotor, N

t t
is the number of blades on the tail rotor, and
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[ITB]B ) LBtLtlle[ITn]bLbll“]tLtB (3.28)

Note that th = le and [ITR]b is identical to Eq

(3.23), except that tail rotor terms are used. Likewise, Lt

mirrors Lm' However, since the tail rotor is wusually a

flapping rotor with low disk loading (2:264), Ltl ig the
identity n{trfx and Ltb = le.
Once Ic is known, Eq (3.19) can be written as
e -B
. _ P P P
E-l; = Ic q + [Ic] q + [wB/I] [Ic] q (3.29)
- 4B , B r B B r
B B B

The inertial rate of change of the main rotor’'s angular
momentum must also be found, noting again that the coupling

of each blade’'s flap and lag motione +to the airframe

are
ignored for the present. Asguming the rotor's angular
velocity, Qm' is constant, the following equation results:
g = [wB’I] {Hnm} (3.30)
B B
where = {N_|r x(&B/bx r.) In terms of the blade
HIR B m|{ b b B )
axis gystem,
L 0
;b = 1o ; oB/P _ | o (3.31)
01y Y
Congsequently, {#IB}B = umlnnmkb . Still, a rotation

from the blade axes to the hub-fixed rotating axis system by
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K means of the flapping angle, 2 , and the lagging angle, [ ,
m m
) is required, yielding
®
N . o
=1 _ |°B/I
H.m = [w ]BLBmLmlle ] (3.32)
Y NIRGQ
B m m b
¢
The rate of change of the tail rotor’'s angular momentum
K about the mass center may be derived in a similar fashion,
: resulting in the following:
®
X : -
=1 B/1
N — [w ]LBtLtb 0 (3.33)
B N, I, .Q
| t"t tdb
€
: The external moments acting on the helicopter result
)
from Bl’s aerodynamic forces, as well as from the main and
tail rotors. For instance, a moment, IB. is due to the
L 4
k influence of Bl' In addition, the horizontal tail’'s
4
: aerodynamic forcesg exert moments on the helicopter.
u
| Expregsed in the body axis system, the moment arm from the
,-
! helicopter’'s center of mass to the horizontal tail is
-F
x
fea). - [ o ] .50
B =T
.‘ z “B
¥
X Hence, the helicopter’'s external moment due to the
L)
K aerodynamic forcesg acting on Bl as well ag the moments
]
resulting from the horizontal tail’'s aerodynamic forces is
i 4] 0 7} 4] -DT
;‘ {"aero}B = IB + ~7; o 7& LBw o (3.35)
o I 0 T 0lp Llply
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The main rotor also exerts moments on the helicopter.
In addition to the main rotor's pitching moment about the

hub, Iy . the aerodynamic forces acting on the main rotor
m

also generate external moments on the helicopter. If the

moment arm from the helicopter’'s c.m. to the main rotor is

{r } = -2 & , then
m z B
B
0

o Zz o
{HIB}B = lym + —(z 0 0 LBm{FHB}m (3.36)
) Y 0 0

B B

In a similar manner, the tail rotor exerts a pitching
moment on the helicopter. Further, if the moment arm from

the c.m. to the tail rotor is

-t
x
{rt} = -ty (3.37)
B -t
z

the tail rotor’s contribution to the external moments acting

on the helicopter is as follows:

o o t -t
z y
{-TR} = o + -tz 0 tx LBt{#TB} (3.38)
B M t _ o t
YelB y x B

Congolidating the various terms derived from Eq (3.12)

results in the helicopter’'s moment equation:

P P 0 0
- “'r-ss1
q =[Ic] L» ] -[Ic] q +LBmLm1L1b (4] +LBtLtb 0
r B B Bi. ¥NIQ N.I1.0
B B mmmb t e tdp
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. [1] -[i] q +{u }+{ }+{ } (3.39)
c B [ c B aero B lIB B -TR B
B

Summarizing, the equations of motion, as expressed in
the body axis system, include the kinematic relationships

found in Eq (3.11), as well as the force equations, Eq

(3.18), and the moment equations, Eq (3.39).

Aerodynamic Forces and Moments

The aerodynamic forces acting on Bl include the body's
gide force, lift, and drag, as well ag the horizontal tail’'s
1ift and drag. For this analysis, the side force term will
be neglected. 1If A, Vo, and 6eo are the equilibrium values
for the angle of attack, velocity, and elevator angle, the
total 1lift acting on the vehicle can be expressed in

equilibrium and perturbation terms as

_ JL oL L
Le + ﬁleAa + E'V- eAV + m‘eAée

e
!

Le + LaAa + LvAV + LéeAée (3.40)

where Aa, AV, and ASe are the perturbations from equilibrium.
The 1lift acting on the body and horizontal tail may be

written directly as (50:23-29)

BL ' T

a O Se

1 ) 1 2
L. = Epv’s C. a Ly, = 30V s,r[cL ap + C 6e] (3.41)

where: SB and ST are the body and tail frontsl area,
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respectively; CL . CL , and CL are the helicopter, tail,

a O, Se

and elevator lift curve slopes; and U =+ L« + ¢ , with ¢
being the tail incidence and £ the downwasgh. Noting that L
= LB + LT » then substituting Eq (3.41) into Eq (3.40)

regults in

+ STCL ] + ST [CL [t-c] + CLééeol}

o} GT OtT e
L = iwv?[s.c. + s.c
a T 270178, Srtu, ]
T (3.42)
Lv = pvo{ao [sBcLa+ STCLQT] + ST [CL% [4,—8] + cLéieo]}
_ 1 2
Lse = 3°Y55¢C,
Se

The drag term may be expanded in a manner gimilar to Eq
(3.40). Johnson neglected drag due to the horizontal tail
(51:208-209) and considered only the aerodynamic drag acting

on the body. Expanding the drag coefficient (53:165;54:204)

yields the following term for the drag:

D = %pVZ[O.OO4A + 5;880

2
B 9 a ] (3.43)

2
L
[}
where AB is the bhelicopter’s wetted body area.

Thus,

_ 1 2 4 2 2
D = ipvo[O.OOQAB + g_r?s CL a]
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= 2 2
Dv-pV[OOO4AB o7°BCL, ]
o
The moment equation is found to be (50:28;51:208;53:52)
: M= 1ov?s cfc v c o+ se (3.45)
) 2 B m m m :
..’ o o Se
where ¢ is the distance from the helicopter’'s center of
gravity to the moment reference center of the airframe, Cn
o
o ig the helicopter's pitching moment coefficient at zero 1lift,
Cm is the helicopter’s pitching moment slope and results
o
) from the fact that Bl's lift and drag do not act through the
“
helicopter’s center of gravity, and Cm ig the pitching
be
moment coefficient due to the elevator.
'._ Employing an equation gimilar to Eq (3.40) results in
: M =Lovisclc v c a +c s
- e §p o B m m_ o m eo
. (L} a Se
¢ ua=lpv°sBcc
T (3.46)
= pV_S§ c[? + C a +C Se ]
“v B mo m, o M.
_ 1 2
Mse = ipvosBccm6
e
: Trim and Perturbation Equations
.
N Now that the generalized equationgs of motion for the
4"

coupled rotor/fuselage system have been derived, they may be
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specialized for particular problems of interest, such as

flight in the horizontal or vertical plane. For this
analygia, straight and level flight will be considered. This
requires @ = b = o = 0. Further, agsuming a flat,
non-rotating earth, gince the heading angle ¥ is a constant,
it can be get to zero. Parasite drag on the main rotor and
side forces on the fuselage are neglected. It is assumed
that the sideslip angle 5, ag well as the tail incidence, i,
are zero. The downwash &£ is a s8mall angle and can be
neglected (50:21). The acceleration of gravity is constant
and the properties of the atmosphere are known functions of
altitude.

The equilibruim and perturbed values of the airframe’'s

motion can be expressed as:

V=V + AV

o
a = o + Aa (3.47)
& =8 + A

o

The equilibruim and perturbed expressions for both the
tail and the main rotors’ flapping and lagging motions were
summarized in Eq (2.44).

Based on the above agsumptions, Egqe (3.11), (3.18), and
(3.39) yield the following equilibrium and perturbation

equationg, neglecting second order and higher perturbations:
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FORCE EQUATIONS

EQUILIBRIUM
Lesao-Decao-Hm-Ht-Igseo = 0
e e
—Lecao-Desao-Tm+Yt+Igc8° = 0
e e
PERTURBATIONS

AVca -84V sa =llaa [L -D ]ca +[L +D ]sa -H -H
o o oM e o [ a e o na ta

+AV{Lvsao-Dvca°-Bm;Htv

}—Hm(ﬂ.C)-Ht(ﬁ.()]

-gAecﬁo-Aqusao

A@sa +A&V ca =l Aa{ |L -D |asa -|L_+D |Jca ~-T +Y
o o oM e o o o e o mOl ta

-AV{chao+Dvsa°+Tm;th}—Tm(ﬁ.()+Yt(B.()]

—gA888°+Aqv°cao

MOMENT EQUATIONS

EQUILIBRIUM

+t Y. +M =0
x t
e e ne

'e-LTe[Tzsao+7xcao]+£znn’tznt

PERTURBATIONS

. 1
Aq = Ic [{IG-LTG{Tzaa°+7xca°]+LTe[szao J;cao]
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(3.48)

(3.49)

(3.50)

(3.51)

(3.52)




— -

=y

—— - - .

+{ H +t H +t Y,  +M Ao+ -L [3‘ sc +Tca]
zm z ta x ta yna} {FV TV Z o0 x o

+£zn +t H +t Y, +M }Avdznm(ﬁ.C)nznt(ﬁ.()

m 'z tv x tv ynv
+tth(f3.()+ly ] (3.53)
m
where
L. = lov’s lc. « +c. &
r - 2°%.°r\°L %% L. “%
e otT Se
L. = iov’s ¢ (3.54)
T - 2P'6°TL .
[ ] [}
T
LTv = pvoST{éLa:o * cbézeo}
KINEMATICS
A® = Aq (3.55)

Calculating the equilibrium conditions requires an
iterative procedure. Initially, the tail rotor is neglected
and hover ig assumed in order to calculate the maximum value
of the main rotor’s thrust with Eq (3.49):

C. = Mg/ [an:B;] (3.56)

T
m

Using this value for the thrust the main rotor’'s +trim
conditions can be found from Eqs (2.67-2.71). Terms for Oo.

ao. and 6e° can then be calculated:
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" [Iée-l"rézx] [Ig—Tn;Yt ]+LT6e [cznms\tznt:tthe]

e o = ; e L (3.57)
N ["6("1‘ t'x] [De *t Ly " Ly ["a"l"r "x]

- Se Se a
\ ‘ 5 1 ¢
o o ° Ly Ig_Tm;Yt;aoEDe+La]

" 6e
x:

‘: where

®
- | p = 1ov*{o.004 (3.58)
,{': e - Ep o : AB ‘
-,
i Note that although Eq (3.57) possegsses tail rotor
(_

7 components, they are neglected for now, ag are higher order
{f terms. Using the initial set of equilibrium conditions, a
’.

2 new value for the main rotor’'s thrust coefficient may be

L 2
{v calculated for non-hover conditions using Eq (3.49), again
;3 neglecting the tail rotor components:
‘. _ . 2 4

o C,r = [llg—Le-Deao-ﬁYt ]/[pn()nnm] (3.59)

& m e
TQ With thiz new value for the thrust, equilibrium
("~
:f,h conditions for A 80, and éeo are again calculated, and this
Py
. process is repeated until C_ converges.

B4 m

o Once the main rotor’s thrust coefficient has converged,
A0

‘.L the tail rotor is added to the system, and new equilibrium
&

: values must be calculated. To accomplish this task, the tail
? rotor’s thrust is calculated using Eq (3.60):
hY

Q

P
-V

M ¥
Q-
,




2 2
cTt - -cy:mnm/ [ntnt] (3.60)

T [

New values for C_ , a , 80. and éeo are now calculated
m

after adding the tail rotor contributions into Eqs (3.57) and

(3.59), and the process is iterated until both CT and CT
m t

converge. These thrust coefficients can then be used to
generate the trim values for both blades, as well as values ]
for 80. oA and 6e°. The result is a set of equilibrium

conditions for the helicopter.

With equilibrium established, the perturbation equations
can be formed. The state vector includes the flap and lag
angles and rates of each rotor and the vehicle’'s forward

velocity, angle of attack, pitch angle and pitch rate, or

. . T
x(w)=[Aﬁ(£'J),A£ ),Aﬁ(t'}),A((é'J),AV,Aaz,AS,Aq] (3.61)

(i.4

where Aa2 = voAa. { i8 either the main or tail rotor, and J
varies from 1 through N, the number of blades on each rotor.
It is desirable to differentiate the gystem with resgpect to
the main rotor’'s azimuth, wm, and nondimensionalize the

helicopter’'s speed with respect to the main rotor. Hence, Eq

(3.61) may be written as

. [) _ qT
X(w)=[Aﬁ(i,j)'A((L,J)'Aﬁ(é,j)'A:(i,j)'A“'Aal'Ae'Ae ] (3.62)

where Ay = AVI(Qan) » My = vo/(nmnn) , and Aal = poAa.

~ _ T
For simplicity, x(y¥) may be written as {xl(w):xz(w)} .

[ )

L SN o o ge e o 2R e audh Ot o o o o
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where
Aﬁ("vé) A"
AL v
_ (i, 4) _ Aal
x. (y) = ‘ ; x,(y)= (3.63)
1 Aﬁ(t,;) 2 Ae'
’ AS
]

Before the equations of motion can be put into the form

x A(w)x(y) [Eq (2.82)] two additional terms must be

fi

accounted for. These terms result from the tilt of the main
rotor’'s thrust vector with the ¢tip-path plane (the plane
described by the blade tips as they rotate), as well as the
tilt due to the helicopter’s angular velocity (2:164;
788-789). These terms, added to Aﬁl and As", are generated

by the following stability derivative:

4
_ 8g |2[ ca ] z[ 2 ]
x = —11-—=A +=—|—=C_+r (3.64)
q R o2 | CTHP Bm ca’T HP

where

C
T

_ m
an = [ < 2]’/2 + utanao (3.65)
PATTEE DN

Note that Eqs (3.50), (3.51), and (3.53) possess two
sets of terms, one including the vehicle’'s state, ;Z(W).
while the other considers the coupling terms resulting from
the interaction of the blade dynamics, ;l(w). Rearranging

the equations results in the following:
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Because the tail rotor is a flapping rotor, lag angle
and rate perturbations can be neglected. Consequently, the
L
main and tail rotor terms in the D matrix differ. For the
main rotor,
& d11 = -Fm{blcao + bsaao}
d12 = -Fm{bzcao + bssao}
d13 = -Fm{bscao + b7sao}
®
d14 = —Fm{b4ca° + bssao}
d21 = Fm{blsao - bscao}
. d = [ {b_.saa - b_ca (3.68)
22 m| 27 o 6 o )
d23 = Fm{basao - bvcao}
® d24 = Fm{b4sao - becao}
d41 = ﬂm{zmbllnm + bg}
de2 © nm{zmbzlnm * bxo}
€
dgsz = nm{zmbS/Rm * bn}
d44 = nm{zmb4lnn * b12}
®
while for the tail rotor,
), = rt{blz"“o - b1"°‘¢>}
L _
d13 = Ft{bl4sao - bzcao}
d21 = rt{%lscao + blsao} (3.69)
®
70
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L[]

23 rt{b14cao + bssao}
de1 © nt{tsz * txbls}

d43 © nt{tzbs * txle}

where, with { denoting the summation, from one to N, of the

number of blades on either the main or the tail rotor,

_ 2 . - 2 2
r = ymlm/[ZIRmJ ;T ytltot/[zunmntnml
2
n = ymIm . n = ZEiESE
m - 2T ¢ 4 21
[o4 (o]

1 C 1
b, = ’W¢{§6[t2t4’Kﬁo]'2t1'zﬁotssd}*ﬁo°w¢{29ﬁot5*§[‘2t4*kﬁo]}
Cc
b2 = swi{BE@°t5+t1]+xﬁo+t2t4;d}+ﬁocwi{}6t2t4+ﬁot5+t1}
b3 = swéﬂat5+t3]+ﬁot5cwi

1 Cc 1
b4 = swc[-§6t3+2t5;d]—ﬁocwi[29t5+§t3]

1
by = -2ﬁoet5-§[t2t4+xﬁo]
bg = Bt,t, G tgt,
b, = -t
_ 1
bg = 20t 4zt (3.70)
b =

A
9 [2eﬁote*t4t5’iﬁo]°wi

o
1

= (- 1
10 [ 29t4t5+ﬁot6+2t1]cwt
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b12 = [26t6+3t3]

by = B 8w { 20 Otg+ 2[ TN ]}
sop {-le [t t A3 ]+2t +203 t gd}
¢ 2 24 1 o 5a

b = Boswét

14 5 ¥ [9"5""'3]

and

2 2
tl = uoﬁocos v, kti
t2 =1 + 2p°sinwi
t3 = N - uoﬁocosw¢ (3.71)
t.4 = kﬁo + coawi
_ 1 1

tg = 3 * HEINY,
t, = 1 + ly ainw

6 4 30

The flap-lag equations of motion previousgly derived for

an isolated blade s8till hold for the coupled rotor/fuselage

system, with a few exceptions. Adding the fuselage
introduces additional coupling terms resulting from Ap, Aal,
A%, and A9 . These coupling terms must be determined and

added to the existing blade equations. 1In addition, recall
that the moment equations for Bl were derived ignoring any
contributions from each blade’'s flap and lag motions.
Coupling the rotors to the airframe introduces blade flap and
lag terms in the airframe's moment equations, and these must

be accounted for. Finally, in an attempt to expand the
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helicopter’s operating envelope reversed flow sghould be
congidered. Each of these isggues must be addressed
@
separately. It should be noted that the following notation
is congsistent with the notation wused in deriving the
equationg for an igolated blade’'s flap-lag motion.
®
One new term introduced by coupling the fuselage to the
rotor is the pitch effect on the blade’'s rotation; 1i.e.,
there ig a “rocking® motion of the blade due to the body's
@
; pitching motion. This can be added to the angular velocity
‘r
! of the non-rotating hub-fixed s8ystem (considered to be
| inertial in the previous chapter). The resulting angular
-
velocity becomes
|
}
| -b/1 " - .5 o=
w = Q& - R4, + L& + 84 (3.72)
i h 1 b h
L
; Referring to Eq (2.11), the absolute velocity of a mass
1 point on the blade, expressed in the hub-fixed rotating
|
|
’. system ig then
| . . .
w -r({ecf3sl + pspBcl + Q8 - 9s83cl)
| . .
{pI} = | rtfer + Qepeld (3.73)
| h r(3chcl - Lapsl - Hcfel) b
®
\
The Lagrangian becomes, for the main rotor,
‘. L = %1 [éz*r}zcz(’ézczc*oz [sz(u:zﬁcz(]—zﬁécz(
¥ : p : 1. 2.1 1 2 1 2
| +2Q[cﬁ+2nﬁcCs(sﬁ—zﬂesﬁc(s(]+§Ice +§IV2 fkﬁﬁ Ek(( (3.74)
|
Y where the body terms are now included. Note that the
73
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translational kinetic energy of the airframe is included in
the Lagrangian. Because ¢, 3, and [ do not appear in this
term it will not contribute any components to Lagrange's
equations of motion.

Assuming the angles &, 3, and { are gmall and neglecting
terms higher than second order, Lagrange's equations of

motion are:

ﬂ/Im (3.75)

Q(/In (3.76)

v . ) ) 2
B -8+ 20 0B+ Q8+ c B+ Enm + kﬁll]ﬁ Q

¢ - 20,8 + 086 + e L/T ¢ K L/T,
$ - Im[B - Qe - “mFﬁ]’[Im‘Ic] = Qs/[lm+lc] (3.77)

The trim equations will not change. Differentiating the
above equations by the main rotor’'s azimuth angle, wn' yields

the following perturbation equations of motion:

’

2
AQ /[InpmJ (3.78)

ry

a3 - AS + 2ﬁ°A:'+ (0A9'+ 2p(ﬁA3'+ p2A3

e . ¢ - ¢ -2 . 2
ac”- 23 A e PO ¢ 2L B 8L + GrAL = AQ, [ImﬂnJ (3.79)
o L4 . ’ AQG
A8 -~ I-[AB -KoAﬁ - ﬁoA( ]/[In+1c] = T___—_]_; (3.80)
I +I _|Q
m c) m
Note that, by including the pitching terms, the
perturbed equations of motion are indeed altered. In order

to generate the perturbed equationa in the form of Eq (2.82),

Eqs (3.78) and (3.80) must be simplified:

T4
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RIS e

I IQ 102
mC c |
I 2!1m+rcl I +1,
Hi Lo 7 A Af - 2an (3.81)
[o4 (o]
e 1 Im ’ Im ’
ae = e [AQﬂi-AQs] irsoA( *t[( —2(B]Are
cm
1, 1 ,
- P AB~TE(°A8 (3.82)
[o] [ o4

and includes the

Eq (3.82) is the moment equation for B1

contributions of each blade’s flap and lag motions on the

airframe. This equation replaceg Eq (3.53) when coupled
rotor/fuselage dynamics are considered. However, when the
uncoupled dynamics are to be examined, Eq (3.53) is used as
the moment equation for Bl.

The coupling terms associated with the aerodynamic
forces must also be calculated. BReferring to Figure 6,
changes in the helicopter’s velocity and angle of attack do

indeed influence the aerodynamic forces acting on the
helicopter blade through the advance ratio, u, and inflow
ratio, A. These terms can be expanded to be:
Ho= o+ Apcogao - Aalsinao (3.83)
A=A+ ALsina + Ao, coan (3.84)
o o 1 o
It will be assumed that changes in the induced velocity
due to #zmall changeg in V and a can be neglected. Hence,
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Au = Axsinao + Aucosao (3.85)

Aal = AAcoaao - Aysinao (3.86)

It (o = 0, then perturbations of the relative normal and

tangential velocity components can be expressed as (16:880)

AUP RQEGocoswAu - AA] (3.87)

AUT RQainylAu (3.88)

Using the perturbed values of the elemental aerodynamic
forces, A(de) and A(dFi). found in Eqs (2.76) and (2.77),

and integrating over the length of the blade, expresgions for

AQﬂ and AQ( may be determined:
‘ 2) _rl]1 C _l _ C
AQB/[IchJ = 2[{§6t3+[1+;d]t5}Ak+{ 2t3ﬁoecw [l+;d]tsﬁocw
+2¢ eswl[u(-’d]t sw}Au] (3.89)
5 2 a 3 :
’ z _ —Z- _
AQC/[Ich] = 2[ {t3+6t5}Ak+{ﬁocw[t3+6t5]
+sw[2t. Ca-log ]}Au] (3.90)
5a 2 '3 -

where ts and t5 are given by Eq (3.71).

The expression for AQO' previously defined in Eq (3.53),

is repeated below to show only the contributions from Au and

qua:

AQB = B-p-{ev-LTv(Tzsa°+7¥ca°]+I&.;fznn;tzﬂt;tthv}Ay
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b + 2By L. |7 80 +7 ca |+L. |7 80 +7 ca
- v a T z o T X z
o a a
{ @
f,
! +M_+Z H +t H +t Y, }u Ac (3.91)
ym zmaztaxta o
a
© Combining the results of Eqs (2.84)-(2.86), (3.79),
. (3.81), (3.82), and (3.89)-(3.91) yields a matrix in the form
> x(¥) = A(¥)x(¥) , and includes not only the perturbations of
i o A3 and Al but also the coupling terms resulting from Ap, Aal,
A8, and AS . For a single blade, this matrix is as follows:
0 0 0 0 0 0O 0 O
ay . _ _
. e = |2 2 0 %k e S e° g e° %y (W) (3.92)
31 32 "33 34 31 32 34
€41 42 a3 44 41 42 0 44
_. where [(referring to Eqs (2.85) and (3.687) as required]
II +1 l
) = m [ a
! €31 T 31
() ]
' lI +1 l
= m [ a
€32 1 32
C
K [Im+lcl In
c = a + - (
33 Ic 33 Ic o
llm+1cl Iln
C3q4 ~ 1 azs *17
P c c
riI +1
! m c! )| C 1 C
: e3) = 2T [{§6t3+[1’2d]t5}‘° +{ B °w[§9t3’[l*'d]t5]
'6 +ay |26t +l 1+9d t a +a'
: 5 2 a 3 o 41
™
(Y

'\‘-\"1\"-‘-\"-.\\-'-\'\‘-_\‘\‘-‘-__‘.\“-’\'- ">
,{.‘fﬁﬂ}f_.ﬂ-."\f\J & J'Vl'qu.i‘.r - \.~~,r_;.~ _‘_.r__.r .)'_. _'.J'
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Cq1 = 34 (3.93)
Ca2 T 242
Ca3 T 343
Caa T 44

N&u—-

t':.',]}""‘o]

c. 1
€42 E[{ets‘°3}°ao*{bocwfst5’t3]*’w[ztsid"ets]}’“o]

Y - C.._
41 E[{ats*ts}sao {éocwﬁsts‘ts]*’w[Ztde

~
N

asa - 0

”

The expression for A9 will also be modified so that

s

a9 = [f“flz 14 f“]xl(wn[gu £,, 0 g“]xz(w) (3.94)

where

' Im 2

£ = - .=

11 -4 "1 P

[o4

f =

12 = 932

. Im

f13 = d3° -I:[(o B 2((3]
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'C
. . I
- t,,=d, - —=2p (3.95)
- 14 14 Ic o :
{ K

‘L n Cc _ 1 Cc
e 811 ° 21 [{"9" +(“"’]"5}"%‘{ ﬁo"“’[ie"s’ [“E"]*‘s]
;: +8y |26t +1 l+gd t ] ca +a'
TN 5 2 3) o 41
|
{
-
K. 8' = ——E ~9t + l+—d ca_+4{3 cy let + 149d t
b, 12 21 o o |2 3 a 5
¢
.n _ 1 c 3 ’
- sw[29t5+2 1+—d ta, sao +a42
- , .
) 814 = 2441 (o
k. c
¢
: If the helicopter’s operating envelope is to be
" expanded, advance ratios greater than 0.50 must be
(’.’ congsidered. This means reversed flow should be accounted
2 for. As was previously discussed, Sisgsingh (8) described
f three different flow regiong a blade encounters. In the
o
,f., first region, called normal flow, the air approaches the
; blade from the leading edge, while in reversed flow the air
3
" approaches from the trailing edge. In the mixed flow region
,( part of the blade experiences normal flow while the other
(
: part encounters reversed flow. The aerodynamic flapping and
b, lagging moments describing normal flow were already defined
h( in Eqs (2.37) and (2.38); the moments for reversed flow are
1
f: s8imply the negatives of the normal flow moments. All that
; remains is to derive the aerodynamic moments for mixed flow.
" According to Sissingh, the boundaries of the mixed flow
[
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region occur from ¥ = T to ¥ = 1 + £ and from ¥ = 21 - € to y

= 2n, where £ = sin-1(1/u) (8:57). Hence, the moments

%
and Q( are modified to be
R Rusiny
Qﬁ = J;cos(sz - 2I;cosEdFa (3.96)
] 0
R Rusiny
= dF - 2|rdF 3.97
QC J; ¥ Jr 9 ( )
0 o
If the above equationsa are s8olved, the equations of

motion for the blade elements in the mixed flow region will

be modified from Eq (3.93) to be

_ 3 3 (1 1 _1
€3y - C3y *YH 8 w[et4 §°3 BV Sﬁota]

_ 2 2 (1 2 2 1 1
Czq = C3q ~ ¥H 8 W[Tiﬁo“ 8 w36“t43"’+’2't3t4]
c _ _ 1 484
33 - C33 T 13¥H B8V

_ 3 3 [1 1
Cqyq = Cay + yu 8 w[§6u3w+3t3] (3.98)

. r

2 2 1 1 2_C. 2
Cq1 T G4 t VM B V|gOHL Yt b, ~OUB tyByiEl [ gds V’]

_ 2 2 (1 2. 2 2 _1 Cc
Cag = Cqg ~ ¥H B WO 8 ¥igl utyBYeOtat, 3“t45d‘w]

_ _ a_s (1 2
Caz = Cq3 ~ ¥H 8 whlzs“SW+3ta]
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) s 3 (1 1 ¢
Cqq = Cqq * 7H 8 V[36°3 E“Ed'w]

The coupling terms in the D matrix [Eq (3.66)] will also

be modified to be, in the mixed flow region,

° ¢ [ ’
dll = d11 - r‘m blcmo + bssa }
.‘ d12 = d12 - Fn{bzcao + besao}
3 d13 = dlS - Fm{bscao + b7sa°}
; ’ r . br
¢ 91a T d1a C m{b4°°o * Pgs%
- d21 = d21 + I‘m{blscxo - bscao}
. d' = d + T b' b‘a (3.99)
3 22 - %22 ¥ "m]°2%% 7 6% .
, ’
: da3 = do3 * rm{bswo ) bvcao}
)
o
: d24 = d24 + Fm{b4sao - bacao}
)
)
3 . . ]
= +
P ¢ d41 d4l * nm{zmbl/xm bo}
8 4 n ’ bl
= +
¢ de2 = 942 * To1ZaP2/Bn 10
§
¢ a . =d.. +n0dzb./R +b
43 43 m| m3 m 11
\ deq = d4q * Tp1ZnPe/Bn * blz}
€
8l
4
..'.",-."\"'\::-."s.::-."x:;-\.j_-.:-. \_’;x:;\:.x:&'\’ At R B A ALY " "\'-";';"';‘-\-:;':‘;";"*:"; . .’-:";"'*:"f'-‘;'.




_'C
\ where
(i b, = 6 t,-3 t.|+at +—f;—d z
: I—HSV’SW AJSW4°3 34 HBW
-H3_sycy Zef? pay+3 t. -t
‘ o 3 "0 o3 4
K
. b' = —usylap{e|2t_t +lﬁ uzszw +2usyl3 t -(—:dt
2 34 3 o o3 a 4
B 2 2
! +3 cw{26t HBY+2t +—(? H 8 w}]
® o 4 3 4
. b‘--zsz les¢2t. +lfs’s
g = TH wisv |36usy a | tgHl Bvev
‘ b'=zszset-§ds +3 o 2esﬂ'.
] 4 = H 8 V¥|8v Ot -g—duay p+3 cyizOusytt,
y. b5 = p s w{ﬁ —6psw+t3] t4}
.
- b6 = usw[28t4usw+2t3 4+—{3 y -] w]
6 b' - 1 383
7 T3 8V
. t 2 2 (2
v b8 = -u 8 w(sausw»ts] (3.100)
.
; b, = -1.%s" 63 usy-2t, +t
; o T TFH B voy(Ofumy-2tyrt,
!
R b' = z‘z c get aytt_t +lﬁ 282
10 - M B YOV FOLHBYILRL e B Y
[}
[/
b' _ 1 4
‘ 11 - g 8 vev
1
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1 3 s
12 = -Sy 8 wcw[eusw+2t3]

b = ~usw[60uszw{ﬁ°[%6u8w+t3]-t4}+cw{éu[t4-ﬁ°t3]sw

2. C, 2 2
R MRS

bl4 = HZBZW{‘%ﬁOMBZW*CW[%9H5W*2t3]}

Note that the D matrix terms for the tail rotor will be
modified in a similar manner.

To simplify the helicopter’'s equations of motion, the
tail rotor can be neglected. Then the equations of motion of
an N-bladed coupled rotor/fuselage helicopter may be
expressed in the form of Eq (2.82), where x(y) is defined in

Eq (3.62), and

€31 32 33 34 ©31 ®32 0 ©34

A(yw) = | 41 a2 43 aq %41 a2 0 44 (3.101)
d;;) 94y 43 d;4 81 35 8)5 O
d d d a

21 922 933 dg4 33 B33 393 33,4
o 0 6 0 ©0 0 o0 1

. ’ ’ . ’

T Tio fi3 e 81y 812 O Byy |

where the fl terms also account for reversed flow ([refer to
Eq (3.685)1].

Note that the terms in A(y) have been previously
defined, and the dimensions of this matrix depend upon the
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number of blades in the main rotor. For instance, if a
four-bladed main rotor is specified, then the state matrix,
x(¥), will be a 20-column vector, where the first 16
components are the flap and lag angles and rates of each of
the four blades. The last four components will consist of
the helicopter’'s airframe terms. The coupled rotor/fuselage
equations reduce to the equations for the blades alone and
the helicopter’s body (excluding the rotor) alone when the
coupling terms are ignored. The coupling terms are included
to account for the helicopter body pitch, velocity, and angle
of attack changes being considered in the blade’'s equations
of motion, as well as the rotor blades’ flapping and lagging

changes being included in the helicopter body's equations.

Verification of the Helicopter's Equations of Motion

The equations of motion have been derived for a coupled

rotor/fuselage s8ystem; however, they 8till need to be
verified. Other s8studies have derived and examined the
equationa of motion for a coupled helicopter, but, in many

cagseg, it is not feagible to make a direct correlation
between thoge gstudies and the present effort. For instance,
Bousgsman (28) investigated the aeromechanical stability of a
helicopter on the ground and in hover. Friedmann and
Venkatesan (33;39;40) and Straub and Warmbrodt (31) presented

analytical models to examine the aeromechanical stability of
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a helicopter in ground resonance. Rutkowski (32) and Hodges

(35;38) modeled their systems using finite element theory.
On the other hand, Johnsgon provided an analytical
examinination of a helicopter’'s motion both in hover and 1in
forward flight (2:774-843). His analysigs can be directly
correlated with the equations derived earlier in this
chapter, and therefore warrents closer examination.

Becauge a helicopter’'s flying qualities are different in
hover and in forward flight, Johnson analyzes the two regimes
separately (2:775). For hover, Johnson assumesg the aircraft
has complete axisymmetry and sgeparates the vertical and
longitudinal-lateral dynamics to g8implify his analysis. In
addition, he assumegs that the 1longitudinal and lateral
dynamics are also separable and only the 1low frequency
dynamics of the rotor are used, since the motion involved in
helicopter flight dynamics is s8low when compared to the
rotor’s motion (2:775;779). For the case of longitudinal
dynamics, two degrees of freedom exist in hover: pitch; and
longitudinal velocity. For an articulated rotor with no flap
hinge offset and no pitch-flap coupling, the helicopter’s
pPitching moment ig8 due only to the in-plane bhub force.
Congequently, the system’'s characteristic equation generates
three roots: a negative real root due principally to the
main rotor’'s pitch damping; and a 1long period, mildly
ungtable oscillation resulting from the coupling of the pitch
and longitudinal velocity (2:787-793).

Johnson also examines a helicopter’s performance in
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forward flight, which is s8ignificantly different from the

hover case. As he states,

Forward speed introduces new forces acting on the
helicopter: centrifugal forces due to the rotation of
the trim velocity vector by the angular velocity of the
body axes; aerodynamic forces on the fuselage and tail;
and major rotor forces that are proportional to the
advance ratio [2:822].

Again, Johngson assumes the longitudinal and lateral

dynamics can be analyzed separately. In forward flight,
three longitudinal degrees of freedom exist: longitudinal
velocity; pitch attitude; and vertical velocity. Ag in

hover, Johnson obtaing the rotor forces and moments acting on
the helicopter from the low frequency response; the rotor
dynamics do not add degrees of freedom to the system (2:824).
There are three primary influences the helicopter’'s
longitudinal dynamics: the pitching moment due to vertical
velocity; the vertical acceleration due to pitch rate; and
the helicopter’'s longitudinal inertia (2:829). In hover the
gsystem’'s characterigstic equation typically yields two real,
negative roots for the vertical and pitch moments and a
complex conjugate pair in the right-half plane resulting from
the longitudinal velocity and pitch coupling. Without a
horizontal tail, the main rotor produces a net angle of
attack instability. As the velocity increases, the vertical
mode becomes more unstable while the pitch mode becomes more
stable. For the oscillatory mode, the unstable period
increases and the damping decreases. However, with a large
enough horizontal tail, the helicopter, 1in forward (flight,
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can have static stability with respect to the angle of
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attack. In this case, as the velocity increases, the
vertical and pitch roots become stable oscillatory modes with
a short period and high damping. In addition, the
» longitudinal velocity modes are also moved into the stabdble
) region and both the period and damping increase (2:8209-831).
Unfortunately, Johnson's analysis does not consider the
effect of coupling the airframe and rotor blade's equations
of motion, which, incidently, increases the number of degrees
of freedom in the system. However, it is possible to verify
E the uncoupled equations of motion by comparing the fuselage's
- responses to Johnson's analysis. Since the equations of
;Q motion for a 2ingle rotor blade were already verified in
- Chapter II, the coupling terms will be the only parts of the
equations of motion which cannot be directly verified.
However, before the equationsga can be ve-ified, the
parameters of a typical helicopter with a single main rotor
must be chosen. The particular helicopter modeled ig the

Rotor Systems Research Aircraft, or the RSRA. An abundance

-
)

AL AT MM

of data for this helicopter is readily available from various

sources (55:;56:446-7;57:0;58:18.1-18.24;59:42-52;60;61;208~-

209) .

7S

R AN
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The parameters used to model the RSRA are summarized in
Table I. Some of the parameters have been extrapolated from
fﬂ the 1/6th scale model of the RSRA, while others have been
calculated using formulag previously mentioned. Table II
ey summarizes the aerodynamic coefficientse extrapolated from

D) " 87
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TABLE 1

RSRA Parameters

FUSELAGE

maximum speed (m/s8) 82.25536
length (m) 21.52
chord (distance from cg to moment center, m) 0.2286
wetted body area (mz) 135.809
magss moment of inertia, (kg-mz) 98102.416
frontal area (mz) 1.032

TAILS: HORIZONTAL VERTICAL
area (m2) 3.29 10.584
x" (m) 13.995 11.624
vy (m) 0.0 0.0
z' (m) 3.512 1.758
%

distance from cg to tail moment center

ROTORS : MAIN TAIL
number of blades 4 4
radius (m) 9.450 1.616
chord (m) 0.648 0.306
weight of a single blade (kg) 123.391 9.954
angular velocity (rad/sec) 22.579 132.068
mass moment of inertia (kg—mz) 3861.722 4.585
golidity (o) 0.0873 0.241
Lock number (y) 10.300 3.500
x" (m) 0.0 11.252
y' (m) 0.0 0.670
z' (m) 2.108 1.385
»

distance from cg to rotor hub
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Table II

RSRA Aerodynamic Coefficients

LIFT MOMENT

C 0.13751 C 0.00000

L m

a o

B

CLaT 0.27510 Cma -0.85944
CL C.05813 Cln -0.04125

Se Se

data contained in the above mentioned souces. The main rotor
has four blades and is articulated, without any hinge offset;
hence, there is no hub moment transmitted to the helicopter
(2:150;788) .

Usaing this helicopter model, the vehicle's performance
is evaluated for various flight conditions. To verify the
equations of motion, the blade equations are first uncoupled
from the body and the results compared to those obtained with
the isolated blade flap-lag equations. As anticipated, the
results are identical. In addition, for the four-bladed
helicopter, the results mirror those reported by Calico and
Wiesel when they examined a two-bladed flapping rotor
(43:62). That is, when the body and rotor are uncoupled, the
four pairs of Poincar‘ exponents associated with each of the
blade’'s flapping modes are identical. Similarly, the

Poincar; exponents associated with the lagging modes are

identical. Figures l11(a) and 12(a) show the real parts of
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the uncoupled flap and lag modes ag the velocity ig increased
from hover through 300 m/s (u = 1.661). For these cases, the
blade natural frequencies are get at p = 1.00 and w, = 0.50,

4

and {, = 0.000.

= (B

Both figures show that initially the flap and lag modes
can be viewed as four identical paira of complex conjugate
Poincare exponents. The flap modes 8plit off as two sets of
roots, each of which conaigtas of four identical real Poincare
exponentg. Note that Figure 11(a) shows one of these sets of
roots becoming unstable at very high speeds. At low gpeeds,
the lag modes are also four identical pairs of complex
conjugate Poincare exponents. Once again, the modes become
real as the velocity increases, but, according to Figure
12(a), the modes become increasingly stable oscillations at
high speeds.

The uncoupled flap and lag modes can also be examined
when reversed flow is considered. Examination of Figures
11(a) and 12(a) =shows that reversaed flow does not
Bignificantly alter the uncoupled flap and 1lag modes .
However, reversed flow does stabilize the flap modes at the
upper end of the velocity spectrum. Further, the range of
velocities where the 1lag modes possess real Poincare
exponents (rather than complex conjugate pairs) increases
when reversed flow is added to the system.

Now that the uncoupled blade flap and lag motions are
known, the uncoupled motion of the rigid airframe needs to be
verified. To this end, the airframe’'s roots must be
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A
calculated at varying velocities and compared with Johnson's
-' observations. Consequently, the helicopter’s uncoupled
b,._n longitudinal dynamics are examined in hover and in forward
: flight.
~. In hover, the airframe’s characterisgtic equation
\_. generates four roots. Two real, but stable, Poincare
::' exponents correspond to Johnson'sg roots for the helicopter’s
» vertical and pitch motions. The other two rootg represent an
,_. unstable oscillation resulting from the coupling of the pitch
.;: and longitudinal velocity. This again mirrors Johnson's
: observations (2:793;829-831).
5*’“ Forward flight can be examined by 1looking at two
E‘ different scenarios: a helicopter with and without a
_\: horizontal tail. Johnson's analysis of the helicopter 1in
" forward flight is based on several asgsumptiong which simplify
the system’'s characteristic equation. Specifically, the
helicopter’'s forward velocity stability derivative [a;21 from
‘ Eq (3.67)) is considered to be very small. In addition, the
E pitch moment stability derivatives are directly proportional
;':‘ to the corresponding longitudinal force derivatives: a;l =
: TMBLLpa1 e 34p T TMBL /T i Ay, 5 MR LA/,
.-, [again referring to Eq (3.67)) (2:788;829). Using these
. aggumptions, the uncoupled airframe’'s characteristic equation
‘C mirrors Johnson's equation (2:829), and, consequently, the
responsesg are gimilar. Figure 13 shows the root locus of the
; A longitudinal roots, with and without a horizontal tail, as
?l. the velocity is varied. Without a tail, an increase in
92
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Figure 13. Velocity Root Locus of the Uncontrolled,
Uncoupled Body Modes; No BReversed Flow; Includes Only
Johnson’s Terms (2:788;:829)

forward velocity tends to destabilize both the helicopter’s
vertical motion and the longitudinal velocity. On the other
hand, the horizontal tail chosen for the RSRA does cause the
vertical and pitch roots of hover to transform into stable
ogcillatory roots as the velocity increases. Further, the
oscillatory roots representing the coupling between the
helicopter’s pitch and 1longitudinal velocity become more
stable with increasing speed. Once again, these results
mirror Johnson's analysis.

Including all the airframe contributions in the system's
characteristic equation does not significantly alter the
velocity root locus, as shown in Figure 14(a). The only
noticeable change is that, when the tail is added, the modes
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representing the coupling between the pitch and 1longitudinal
velocity do not stabilize, even at very high velocities.
Figure 14(b) plots the real parts of the uncoupled airframe
modes a8 a function of velocity.

It should be noted that adding reversed flow to the
system does not significantly influence the airframe’s roots.
However, Figurea 15(a) and 15(b) do show that, at very high
gpeeds, adding reversed flow to the system does stabilize the
modes representing the coupling between the pitch and
longitudinal velocity.

As the above discussions illustrate, the uncoupled
airframe does mirror Johnson's analysis as the velocity is
varied. The final step, then, is to add the components which
couple the airframe and the flap and lag terms of each blade

on the main rotor. With p = 1.00, 6( = 0.50, and ¢, s
0.000, the coupled rotor/fuselage system’'s roots will be
examined as the velocity is increased from hover through 300
m/s.

The velocity root 1locus of +the coupled body modes,
Figure 16(a), differs significantly from the velocity root
locug of the uncoupled airframe with reversed flow added to
the system [Figure 15(a)]. 1In addition, Figure 16(b) shows
that the real parts of the coupled airframe modes differ from
the uncoupled cases [Figures 14(b) and 15(b)] as the speed
increases. Now, recall that, without any coupling terms in
the system, the vertical and pitch modes generated =stable

ogcillations as the forward velocity increased. However,
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this is not the case when the coupling terms are added. The
hover roots are nearly the game, but now, as the velocity
increases, the root representing the helicopter’'s vertical
motion becomes more stable while the pitch root becomes less
gtable. In addition, the unstable oscillations in hover
become more unsgtable with increasing velocity. Thig trend
also differg from that exhibited by the uncoupled modes
representing the coupling between the body’'s pitch and
longitudinal velocity, for those modes became more stable as=a
the speed increased. Finally, notice that, at higher
velocities, the pitch mode and one of the modes representing
the coupling between pitch and longitudinal velocity generate
a slightly unstable oscillatory pair of rootas for a bit
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before becoming unstable real modes again.

The coupled flap and lag modes [Figures 11(b) and 12(b)]
algo differ from the uncoupled modes [shown in Figures 11 (a)
and 12(a)] as the velocity is varied. Figure 17 shows the
velocity root loci of the eight flap modes=s. The magnitudes
of the imaginary parts of each of the lag modes remain at
approximately 0.500 throughout the velocity spectrum
examined. At low speeds, Figures 11(b) and 17 show that the
eight coupled flap modeg are very sgimilar and mirrorl the
uncoupled modes. However, as the speed increases the coupled
modeg diverge. 1In fact, only one pair of modes is real above
80 m/a. Further, at very high speeds, two other modes become
unstable. The remaining four modes congigt of two paira of
stable oscillatory roots through 300 m/s. Ag for the lag
motions of the four blades ,Figure 12(b) indicates that the
coupled lag modeg remain stable complex conjugate pairs. Six

modes are oscillatory roots similar to the uncontrolled case

for low gpeeds. Two roots, however, differ drastically from |
the other 8ix roots ag the velocity is increased. While i
stable throughout the velocity spectrum analyzed, these two |
Poincaré exponents are much more stable (except at very high
speeds) than the other modes, even in hover.

Clearly, coupling the flap and lag motions of the main
rotor’'s four blades to the helicopter’s airframe (including
the horizontal tail) does indeed influence the results. For
this analysia, the coupled equations of motion will be wused
for the remainder of this study.
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IV. Modal Control Theory

Once a set of equations of motion have been derived and
the stability regiong determined, attention can be focused on
developing a control technique which reduces or eliminates
the unstable regions. The modal control theory used in this

study is summarized below.

Flogquet Theory

The stability of a system of linear equations with
periodic coefficients may be determined using Floquet theory,
which only requires the knowledge of the state transition
matrix at the end of one period. Becaugse Floquet theory
involves no assumptions beyond those wused in deriving the
equations of motion, the accuracy of its results depends only
upon the computational procedures used (7:26-27).

Understanding modal control theory for periodic systems
requires a brief review of Floquet theory. The ensuing
development follows closely that found in Calico and Wiesel
(43;62) .

Congsider a get of linear ordinary differential equations

of the form

x(t) = A(t)x(t) (4.1)
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where the matrix A(t) is periodic with period T. For
convenience, the independent variable is changed to ¥, and Eq

(4.1) becomes

x (9) = A(W)x(y) (4.2)

where A(y) = A(y + 27n) . The golution to these equations
can be written in termse of the state transition matrix,

d(yw,0), as follows:
x(y) = &(y,0)x(0) (4.3)
where & (y,0) satigsfies the matrix equations

® (y.0)

A(y)&(y,0)
(4.4)

£(0,0)

H
(=]

A direct result of Floquet theory is that ¥ (y,0) can be

written as
E(y,0) = F(we ¥F(0) (4.5)

where the matrix F(y) is periodic with the same period as
A(y), and J ig a constant matrix which can be expressed in
the Jordan normal form.

The diagonal elements k& of J are Poincare exponents.
Note that the system's stability is governed by the Poincare
exponents alone, since F(y) isa periodic and therefore
bounded. That is, if all the real parts of the kk are

negative, the system is stable. However, the system is
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unstable if any of the Poincar; exponents have positive real

parts.

Now, because the knowledge of the state transition
matrix over one period determines the solution everywhere,
golving for all time thus requires solving the matrices J and
F(y). Since F ig a periodic matrix, F(0) = F(2n) , and

evaluating Eq (4.5) at the end of one period yields

szF-

$(2n,0) = F(0)e 1(0) = F(0)AF *(0) (4.6)

where A congsists of the eigenvalues of %(2n,0).

Thus, F(0) can be referred to as the matrix of
eigenvectors of the monodromy matrix %(2r,0). In addition,
the eigenvalues, or characterigstic multipliers, of &(2n,0)

are related to the Poincaré exponents by

Ak = exp(2ﬂkk) (4.7)

In general, both A and A are complex quantities; thus

A, = A + (A (4.8)
& kk kI
Kk = tk + a»k (4.9)
from which
_ 1 2 2 12
tk = fﬁln[(Ak + Ak ) ] (4.10)
R 1
w, = 3 tan"'(A, /A, ) (4.11)
& 2n &I kn -

Constructing a complete solution to Eq (4.5) requires
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E} the knowledge of the eigenvector matrix F(y) over one period.
A

'

i" Substituting Floquet’'s results from Eq (4.5) into Eq (4.4)
t\__ results in F
- F () = AWF() - F(yJ (4.12)
v R

A The initial conditions for this differential equation
-

> are available from the eigenvector matrix found in Eq (4.6).
N

":' Hence, by numerically integrating Eq (4.12) over one period,
- F(y) can be found throughout the entire period.

NS

'f- Even though F(y) and J can be calculated, the results
1

‘-‘:F may be inconvenient if the matrices are complex. 1If this is
q

o the case, both matrices can be rearranged to make them real.
\-

e F(y) should consist of column vectors f which are either 1)
""' the real-valued eigenvectors associated with the reai
.j Poincaré exponents, or 2) two columns representing the real
t:f and imaginary parts of the eigenvector, fi. and fi. .
N real imag
: o agsociated with a complex conjugate pair of Poincaré
:," exponentg. The J matrix will consist of either 1) diagonal
s

$ entries of the real Poincaré exponentg, or 2) diagonal blocks
_, .

;' of the form

> .

L w

- 4 & (4.13)
:: -wk 4

e

: for a complex conjugate pair of Poincare exponents (62:672).
-
e Now, it is8 often necessary to find the solution to the
', inverse eigenvector matrix, F-‘(w). Rather than numerically
" inverting F(yw), which is expensive and leads to round-off
: 102
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-1
error (62:672), F (¥) can be calculated by differentiating

-1

FF =1 and substituting Eq (4.12) into the result,

yielding

[F"(W)] = -F "(W)A(Y) + JF (y) (4.14)

Thig equation can also be numerically integrated, and
the results reduced to a convenient, usable form by harmonic

analysis (63:108-109).

By introducing a set of modal variables, 7, such that

x(¥) = F)niy) (4.15)

the periodic system of Eq (4.2) can be written as
n () = F ' (y) [ A(WF(y) - F (w)]n(w) = Jn(y) (4.16)

Hence, the periodic system can be reduced to a
constant-coefficient system by using the eigenvector matrix
F(y) as a periodic transformation (62:672).

Control of the system can be accomplished by adding
gstate variable feedback to change the unstable Poincaré

exponentg. Consider the standard control problem
x (@) = A(w)x(y) + B(¥)u(y) (4.17)

where ﬁ(w) is the control vector and B(y), a matrix which is
periodic with the same period as the fundamental dynamical
sygstem, determines the control distribution.

Assuming full state feedback,

103




Wwvwmm‘wmmwmwtnr Lol Al ol Lol Sall Salt Sul Al RallSall Sal ek el i Al

u(y) = K(yp)x(y) (4.18)
where K(y) is the gain matrix. Thus, Eq (4.17) can be
written as

ic(w = [A(w) + B(w)l((w)]:_cc(w) (4.19)

where §c is the closed-loop state.
By introducing the modal variables into the feedback

control system of Eq (4.19), the following results:

n (W) = dn(w) + F (WBw) uly)
or (4.20)
g (¥) [J + F"(w)n(w)x(wﬂw)]nc(w)

If K(y) is chosen to be periodic with the same period as
Eq (4.2), then Eq (4.20) is a Floquet problem. To insure
that the closed-loop system meets the desired specifications,
K(y) must be calculated. Calico and Wiesel (43;62) have
developed a modal control technique which generates the
required K(y) by changing the unstable Poincare exponents and
leaving the others unaltered. Both scalar and vector control

are congidered.

Scalar Control

Consider firast a system of four equations of motion
where either one pair of complex conjugate Poincaré exponents
or two real Poincare exponents are unstable. This situation
occurg when an isolated helicopter blade experiencing
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flap-lag motion encounters unstable regions at various
advance ratios, as was discussed in Chapter II. The modal
variables may be numbered so that nl and n2 are the two
stable modes while ns and n4 are the unstable modes. The
control can be given by
_ T
u(y) = k" (¢)n(y) (4.21)

where ET(w) is a row matrix of modal feedback gains, and is
given by

-T _

k' (y) = [kl(w). kz(w), ks(w), k4(w)] (4.22)

The modal feedback control system in Eq (4.20) now takes

the form

n, (W) = [J + gy k(y) ]nc(w) (4.23)
where g(w), a periodic modal controllability matrix, is
g(¥) = F (B (4.24)

Modes nc (y¥) are controllable if the corresponding gt(w)
'3

are nonzero.

Assuming kl 2 and KS 4 are the pairs of the Poincare
exponents associated with nl 2 and ns 4’ regpectively, and
assuming, for the present case, that kl(w) = k2(w) = 0, Eq

(4.23) can be expanded to be
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T, @ kz8, kg,

n v = | “2 T2 kzg, LY ng (¥ (4.25).
0 0 Zytky8y w3tkg; . ‘
0 0 w.+k

a*ka8s T4tk |

By inspection, the Poincaré exponents Kl 2 are the sgame
;; ag those of the open-loop system, while the coupled equations
s
A7 for the modes na and n4 determine the Poincare exponents for
v
e
N ° x3'4. The equations defining ns and n4 can be decoupled from
.. Eq (4.25) and separated to form the two-dimensional system
N
~
\
[ . Ttk 8, Wtk g
o nc(w) = 3 373 3 473 nc(w) (4.26)
g wetkazBy T,tk,E,
N It is desired to choose gains ka(w) and k4(w) guch that
{:. the Poincare exponents KS 4 3Te stabilized. First, however,
Y
- gt.(w) has to be expressed in a convenient manner. Clearly,
[
N this function is periodic; it may be expanded in a Fourier
series as (64:81-82)
'
.t o)
- gt.(w) =8, * E [3«: cog(ny) + 8. sin(nw)] (4.27)
" n n
o n=1
v .
.l
g where the Fourier coefficients are obtained from g .(y) as
; follows (2:153-154):
K.
'(‘ 2n
L IS _ 1
2 0
" 2n
. (- 8 = Jgt.(w)cos(nw)dw (4.28)
. n
I-' 0
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21
g._ = J-gt.(w)sin(nw)dw

o

Consequently, assuming that k3 and k4 are either

consgtant, or can be expreased in the form
k,(w) = k,8in(ny) or k (v) = kicos(nw) (4.29)
Eq (4.26) may be written as
nL¥) = An_(¥) + A (WIn_(¥) (4.30)

where Al igs a constant matrix, and Az(w) ig a purely periodic
matrix. Even though the gains k3 and k4 may be chosen such
that Al has stable eigenvalues, the stability of the system
is not assured (682:673-674). However, Calico and Wiesel
(43:61-62;62:674) developed a technique which can be used to
gset the sum of the real parts of the two new roots to any
desired value. This technique, which determines the required
values for k3 and k4. is reviewed below.

Defining D(y) = det(®(y,0)] and tr(°) to be the trace,

it can be shown that (62:674)
D () = tr[A(w)]D(w) (4.31)
Thig first order ordinary differential equation may be
integrated by meang of an integrating factor to yield

¥
D(0) exp J tr[A(w)]dw (4.32)
0

D (y)
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i Evaluating Eq (4.32) at v = 2n and recalling that the
Cd
6’ determinant of a matrix is the product of its eigenvalues,
\ 4 2n
::- det[§(2n,0)] = N Aé = exp Jtr[A(w)]dw (4.33)
=3
‘.: 0
s ®
'; But, the eigenvalues of the monodromy matrix are related
Y
-\j to the Poincare exponents by Eq (4.7) so that
1Y
\'

e 2n

4 1
¥ i’k - L tr[A(w)] (4.34)
N =3 0
r Subsgstituting for A(y) from Eq (4.26) yields
2 Lt
: JRTA :3+:4+5;I [kswiss0 + kg av @z
- 0

o«
{ v

. The products ks(w)ga(w) and k4(w)gi(w) can be agsumed to
;;j contain constant terms. For inatance, if k:5 isa constant and
". gs(w) has a constant term in its Fourier expansion, ksgs(w)
. will have a constant term and a 8eriea of periodic terms.
.
'.; If, on the other hand, ks(w) has the form of Eq (4.28), the
o
':‘_ product ka(w)gs(w) will generate a constant term via the
4
; standard trigonometric identities (62:673). Thus, Eq (4.35)
‘:_' becomes
T el -
l. E3 + {4 = f3 + (4 + [k333]° + [k484]o (4.36)
L where [k333]° and [k4g4]° are constant values.
.'( Note that if only one root, say (3. is unstable, Calico
;j and Wiesel (2:673) showed that the root shifts along the real
-’.
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axis as a linear function of the gain k3:

83 = ta + “‘3‘310 (4.37)

For stability it is necessary that the sum of the real
parts of the desired Poincare exponents in Eq (4.36) be
negative. Sufficiency, however, requires that each Poincaré
exponent has a negative real part. Eq (4.36) can be used to
define pairs of k3 and k4 to yield a gpecific sum, and, using
these values, the closed loop system can be solved by Floquet
analysis to find the actual values of té and E;.

Several methods exist to choose values of ks and k4. In
the case where 33 and g4 have constant, non-zero terms 830
and 540. regpectively, in their Fourier series, and k3 and k4
are chosen as constant gains, one method ig to sgimply cho=se
values of k3 and k4 such that Eq (4.36) is satisfied.

Values for k3 and k4 may also be found wusing the

equations

ky = (53 - 53]/530 I [54 - 54]’840 (4.38)
A third method is to choose a value for k3 and solve the

following equation for k4:

1

k = =
840

4 [ ¥ - k333°] (4.39)

where ¥ = Es + t4 - 53 - t4 .
Different, non-constant gaing may be wused to select

higher-order coefficients from the Fourier expansions of
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gs(w) and 84(W)- For instance, if k3 is chosen ¢to be a

constant, and k4(w) = k,8in(y) , then the analogue of Eq

4
(4.36) is

_ 1
Vo= kag, ¢+ §-k4g4sl (4.40)

where 348 ig the coefficient of the firat sine term in the
1

Fourier series expansion of 34(w). Similarly, for k4(w) =

k4cos(w) .

¥ = + (4.41)

1
§k4g4c

kSgSO 1

where g4c is the coefficient of the firat cogsine term in the
1

Fourier series expansion of 84(W)- The values of k3 and k4
can still be calculated with one of the three methods used
when both k3 and k4 are constant.

In terms of the physical coordinates, x(y) and u(y), the

control required to change the two unstable modes ig given by
u(y) = [Iks(w)f3 () + k4(w)f4 (w)]x(w) (4.42)

where f;‘(w) and f;’(w) are the third and fourth rows of the
F'(y) matrix, respectively. The gains ka(w) and k4(w) are
based on the Fourier series for 33(w) and 84(W)- as
previously discussed.

To summarize, degsigning a scalar controller to sghift a
pair of unstable roots requires the following steps:

1) through numerical integration calculate the state
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::: transition matrix at the end of one period to determine
:6 the Poincare exponents and the associated eigenvectors
By 2) choose the desired Poincare exponents

3) form the controllability matrix, g(y), and the
. ° associated Fourier series expansions

__ 4) choose the gains ki(;") as either constants or in
': the form of Eq (4.29) and determine their values with
:::‘ one of the three methods previously described

5 5) calculate the control using Eq (4.42), and insert
:‘: it into the feedback control system of Eq (4.17)

:‘3 6) integrate the controlled system’'s state transition
: matrix for one period, and calculate the new Poincare
?' exponents to determine the individual root locations.
\:.. 7) If the individual root locations are not
{t acceptable, pick another pair of values for the gains
which satisfy Eq (4.36) and repeat step 6.

Z:. Using the technique summarized above, two unstable
'- Poincare exponents can be ghifted into the s8table region
: while the other exponents remain the same. Even though this
.' analygis wags accomplished using a fourth order system of
f' equations, the sum of an arbitrary number of roots may be
set. However, ag the number of roots increases, determining
‘ the gain is complicated. Consider the coupled rotor/fuselage
. system digscussed in Chapter 111, where the dimensiona of the
': ™ state vector, x(y), are of order 20. It is entirely possible
:::( for thig system, when uncontrolled, to generate more than two
ungtable modes. If m is the number of unstable modes, then
' 111
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k(y¥) can now be expressed as

k(y) = [ kx'kz""'km'°'°""'° ] (4.43)

If the trace rule is again applied, Eq (4.36) becomes
Szi - S [ﬁ- . [kig‘.']o] (4.44)

Again, for stability the sum of the real parts of the
new Poincare exponentg must be negative. Eq (4.44) can be
used to calculate km after values for kl'kz""'km—l have
been specified. However, gince only the sum of the roots is
negative and not the individual values, sgtability is not
aggsured. A numerical search procedure is of possible use
here, but attempting to find m different values for ¢the
individual components of the gain matrix is quite difficult
for multiple modes. Consequently, scalar control is
difficult to apply to systems with more than two unstable

modes. In this situation, vector control may be an

alternative solution to controlling the system.

Vector Control

Ag shown in the previous section, scalar control can
eliminate a system’'s instabilities. Now, suppose the control
u(y) has more than one dimension. Consider again the case of
a fourth order system (blade flap-lag motion) with ns and n4

being the unstable modes. Restricting the control to these

112

..... SIS T ~
- Ll 4\)\4-5-'\-)',\_% v\r e

l. N « (N ) DL, ofl, afhy BOL. af s affdy )

N S TR A SO T TN TN Nt
. 1‘5-" pl'“)‘_\.r_ o \."\" 5 _‘.'- .r\'.)'_‘- \‘r\ \ \_ .\ NN
’ AN



K = 9| 4 > 141 - M | = Gadl - " Jialb el tal Sab Sl Safl Snl S0 Sdb Sl Sk Sold S8 Sob Sy
« I~

"\
Iw
. two modesg yields
' K
_, - - | %33 %34 || 73
o’ u(y) = k(pIn(y) = K K (4.45)
: 43 “aa N
"‘ Just as in the sgcalar case, the above expression for
\
- 1—1(1#) can be substituted into Eq (4.20), and, since the stable
'.f modes are left unchanged, the closed-loop equations for the
o
P P controlled modes are (43:63;62:674-675)
i~
S 0 o) = K33833'%43834" %3 K34833"%44834"“3 n (0 (4.46)
~ c k33843 K43844% s K34843%K44844%%y | ©
«C
'. where the gain elements kié'(w) are all functions of ¥ and the
n! -
\' controllability matrix, g(y), is periodic.
~
\. The two ogcillatory modes in Eq (4.46) can be
ol transformed into a pair of uncoupled, purely damped modes by
y decoupling the two modes in question. This requires that
§ @ kag (W) 8,4 (W) ¢+ kw(w)s“(w) = —w, ()
N (4.47)
N
- = -
: ko (W) B4 (W) + k“(w)gu(w) w4(w)
‘ The degired value of the real parts of the Poincare
:' exponents, E:; 4+ Can now be chosen, and the diagonal terms in
: Eq (4.46) can be forced to assume these valuesg. This results
|\, in two more equations:

kg (W) 833 (¥) + kg (W) gy, (W) = Ly ~ T4

(4.48)
[ (. ko (VB (W) + k, ,(WE,, W) =2, - T,
1 113
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Thus, Eqs (4.47) and (4.48) constitute four equations
with four unknowns--the elements of the matrix k(y). Since
the values of the matrix E(w) may be calculated at evenly
spaced intervals throughout the entire period, a harmonic
analysgis algorithm may be generated, and a Fourier series
representation of the elements of i(w) can be obtained.

However, the controllability condition

2
[gss(w)g44(w) - 334(w)g43(w)] ® 0 (4.49)

must be satisfied at any point in the period, or infinite
values of k(y) will be generated (62:875).

If k(y) is infinite at any point, the gain functions
kgfuﬂ cannot be used to explicitly decouple the system. On
the other hand, these functions can be chosen to obtain the
largest possible shift in the Poincare exponents while
minimizing the required control forces (43:60).

To accompliszh this, asgume k34(w) and k,.(y) are =zero

43
and then apply the trace rule to Eq (4.46). The resgult is an
equation gimilar to the scalar control equation [Eq (4.36)1:

¥ = [kss(w)gss(w)]o + [k44(w)g44(w)]° (4.50)

where the bracketed terms are the constant parts of the

Fourier series expansion of the product i(w)é(w). Now, the
exponential Fourier series for both kas(w) and k44(w) may be

written as (63:60-62)

-~

E
?i
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o K(y) = K 2 k,e (4.51)
V. -
(— P {=-w
'.: where the congstant K will be chosen later. The integral
<
- expreggion for the coefficients kt can be expanded to be
{
\ 2n
. 1 )
.:: k, = o K () [cos(tw) - Lsin(lw)]dw (4.52)
'. Hence,
- 1 1
\ k =k ;k=—[k-¢'k];k_=-[k+¢k] (4.53)
= o c, 4 2 c, 8, < 2 c, s,
-
qf The Fourier expansion for either gss(w) or 344(!#) can be
- similarly stated to be
". a(y) = Egme”‘"’ (4.54)
m=-o
b
:::'. where
s 0 1
, 1 .
. g = g ; g - _[g - "g ] H g- = —[g + 08 ] (4.55)
- o <, m 2 <, g, m 2 Cp 8,
RS
::j The product k(y)o(y) can then be written as
. S < i{(l+m) y
2 [lc(w)a(w)] = Kz Y kg, (4.56)
" l=-® m=-o
::
“C Now, let m = -£ ., yielding the conastant term
g coefficient
N =
(. [K(w)a(w)] = Kf k,g_, (4.57)
° $=-
;J
.J
-, 115
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A
- If, for the minimum control condition, the sum of the
u
b,
{ *® squares of the coefficients kc and ks are constrained to be
- r4 4
" unity, then
7
" 1 e 2 2 e 2
: ® D) [kc; kst] = Ykx , =2 f Kk _,+ ko =1 (4.58)
- I=- {=- i=1
:: Maximizing the constant term [k(w)a('w)] while
7 o
i minimizing the control x(y) can be viewed as an optimization
._: problem, where the Lagrangian, L, can be expressed as (85:55)
.‘::
N @ @ .
« L = zklg_z + x[z Yk _, ¢ ko] (4.59)
. {=-m =1
w,
{-
s
- with » being the Lagrangian multiplier.
r _
'
f | Applying the necessary condition for gstationarity
4
; results in
3 @ ®
IL o 2
- == = = klg- + 2x ktk-t + Xk =0 (4.60)
o dkj dkj [ L_o < Zzl o
*
g
] or, for j = 0,
L4
<
. g
N L)
o ko TN (4.61)
1
'y
4 and, for j # O,
C g
) kj = - (4.62)
Substituting Eqs (4.61) and (4.62) into the constraint
. yields
116
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X = (4.63)
&=1
If D is defined to be D = 2X , then
2 [0 o] 2 2 1/2
D = [ g, ¢ 2 2 [gc£+ 88(]] (4.64)
° =1
and the coefficients of x(y¥) become
k = - 1g kK =-25 . x =-2 (4.65)
co D c° c, D c, s[ D st
The constant term [K(w)c(w)] is then
o
K 2 Q 2 2
[K(w)a(w)] = - 5[ g+ ) [gc . 8 ]] (4.66)
o o ¥s
£=1
The parameter K is s8till available for pole placement.
Consequently, if the Fourier coefficients for gss(w) and
844(W) are gSc:' 8333 and g4°t' 8483' respectively, then Eq
(4.50) becomes
K [ ®
33 2
R e D) [g + g ]
D33 3c 3ct Sst
L t:l
K..T ©
441 2 2 2
"5, |84 * 2 [34c t Bag ] (4.67)
44 °o ., 4 4
- :l
Choosging K33 and K44 gso the new Poincare exponents are

placed in their desired locations requires a numercial search

procedure gimilar to that used with scalar control. In other
words, a value for K33 may be chosen, and then the following
117
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equations can be used to find K4

4:

K 2 2
-D ¥+ 33 gz + 83c 83g
D 3¢ < Y4
_ 44 33 o <=1

K = l (4.68)

44 ®
gz + gz 2
4c 1c, ‘438

Once K33 and K44 have been calculated, the resulting

optimal gain functions, kas(w) and k44(w), maximize the shift

in the Poincare exponents with the smallest possible control

u(y), where

_ k(W |
uly) = 33 ?1 x(y) (4.69)
k(01

Congequently, a vector controller can be degigned as

follows, with gsteps (1) through (3) being identical to those

gsteps used in the sgcalar control case:

4) determine the gain matrix i(w). either by s8olving
four linear equations with four unknowns, or, 1if the

controllability condition is violated, by

a) choosging a value for K33
b) using Eq (4.68) to solve for the constant K44
c) calculating the optimal gain functions k33(w)

and k44(w) with Eqs (4.64) and (4.65)
5) calculate the control required in terms of the
physical coordinates u(y) and x(y) and insert it into

the feedback control system of Eq (4.17)

6) verify the root sahift by integrating the
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controlled system’'s state transition matrix for one

period and obtaining the new Poincare exponents.

Iterate to obtain the desired Poincare exponents.

Following the above procedure will result in developing
a vector controller which will shift two unstable Poincare
exponents while leaving the others unaltered. However, it
may be necessary to stabilize more than two modes in a
system. Again congider using the modal control technique to
stabilize a system, s8uch as the coupled rotor/fuselage
system, with more than two unstable modes. Unfortunately the
same gsituation which occurs with the scalar controller also
arises when the vector controller is |used. That is, it
becomes extremely difficult to determine the correct gains
required to shift more than two unstable modes to their
desired locations.

To summarize, both scalar and vector controllers have
been developed to ghift two unstable modes into the stable
region. It appears, though, that the only way to shift more
than two modeg is by guessing the values of the individual
terms in the gain matrix. However, another possible solution
is to apply the modal control technique to shift a single
pPair of wunstable roots and then, using that controlled
system, design a control which shiftsa two other wunstable
rootgs. This type of control could then be used to stabilize
any number of modes. All that remains is to verify these
observations by attempting to control a system of equations
of motion.
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V. Results from Controlling Blade Flap-Lag Motion

Chapter IV outlined the procedure used to develop modal
control theory. The results of this theory can now be
implemented in a controller to reduce or eliminate a
helicopter blade’'s unstable regions.

The firat step in constructing a controller is to choose
the control system. Calico aﬁd March (42) applied the time
periodic modal control technique to the problem of
controlling the flapping instabilities of a helicopter blade
uging a flap torque actuator sgituated at the blade root.
Calico and Wiesel (43) designed a time periodic modal control
system which wused existing collective and cyclic pitch
mechanisms on a conventional swashplate. Stabilizing
helicopter blades with this +type of active control could
posgibly eliminate the need for mechanical lead-lag dampers
and expand a helicopter’'s operating envelope (31:13-14). It
remaing to be seen what computational difficulties arise when
the modal control technique, as implemented by Calico and
Wiesel, is used to control more complex systems, such as
thogse described in Chapters II and 1III. Therefore, this
technique will firat be used to control the flap-lag motion
of a single rotor blade.

The control vector u(y) for the control of a helicopter
blade’'s motion typically has2 components which represent
collective pitch, 60. and cyclic piteh, Gc, e :

8
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u(y) = Gc (5.1)

The control matrix B(y) is then composed of periodic

pitch control functions me(w):

0 (4] 0
0 0 o
B(y) = m, () m. () m, () (5.2)
630 630 638
m, () m,6 () m.  (y)
i 640 e4c 948

where

mGS;W) = ycos(’o [psinw [%Co-e-o+%+%ﬁo-%o]
4

sucony (3+50-30,0 4+,

[
()3 (49, 30 oo s ) i

meaéw) = },cos(o[coswG{o{l+ﬁo}+%{l+pz(°-ﬁo}+%ﬁo]
2
*'ai Sinw[l-ﬁ)o(o]J:_;'ﬁ'o(o %[“’( ] %Kﬂo(o]-%(o[l"g ]cosw
nem:w) = ycos{ [sian( MERS otP }+l{1-ﬁ -uzco}]

o cosw[l ﬁoto]'f‘g‘[%{l £yt } ‘{” +(0}]]

1 3
It [[rauz]sinw+:l?u] (5.3)
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The above expresgiong are generated by extracting the

; collective and c¢yclic pitch terms from the generalized
E aerodynamic forces of Eqe (2.72) and (2.73). Terms second
¢
CfL order and higher are neglected.
b7
-,

: Results Using Scalar Control
( L
9 L4

: For scalar control, u(y) can come from either the
\'

. collective, cyclic cosine, or cyclic sine pitch controls.
- ® Degigning a scalar control system requires determining the
[~ _

N gain matrix, k(y), needed to move the unstable modes to their
N degired locationa. To obtain the gains, Eq (4.36) must be
el
e solved. The modal controllability matrix is given by

. n(w)t()+|n(w)f()

b 3j 13 4j 14

Q"

s ) ;r)fza( y) + :f)f24(W)

" g;(v) = (5.4)

y (w)f ( ) + m ()t ( )

% %35 33 Yoy 34

. (w)f Sy + (WIth )

4 I 31 43 64j 44 |
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where j = o, ¢, or 8 for collective, cyclic cogine, or cyclic

gine pitch control, respectively. The elements of Ej(w) can
be written in a Fourier series form using harmonic analysgis.
The gains k3 and k4 can then be calculated by one of the
three methods described in Chapter 1IV.

These gains can be used in Eq (4.42) to determine the
control required to shift the roots ¢to their degired
locations. Once this control is inserted into the system,
the Floquet solution confirms the new Poincare exponents.

To demonstrate the modal control technique, five
different scalar controllers are degigned to stabilize a
point in the unstable region at 4 = 0.40 (Figure 0). This
design point is defined by p = 1.15 and w, = 1.40. With (B =

4
C( = 0.000, the real parts of the uncontrolled Poincaré

exponents are 53.4 = 0.00189804. The real parts of the
desired pole locations are chosgen to be Eé'4 = -0.025. The
five scalar controllers are as follows:

1) collective pitch, using the congstant terms of the

Fourier series expansion of E(w) corregponding to the
unstable modes, denoted as 330 and 340

2) cyclic cosine pitch, using the constant terms of
g(y), denoted as Ca0 and c40

3) cyclic sine pitch, again using the constant terms
as described in the firast controller and denoted as
830 and 840

4) collective congtant/cogine pitch, using the
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constant term of the Fourier expansion of g (y)

corregsponding to the first unstable mode (330) and the
coefficient of the firat cosine term in the Fourier
gseries expansion of E(w) corresponding to the second

unstable mode (g4c )

1
5) collective constant/sine pitch, wusing the terms
described in the fourth controller, except 843 the
1
term corresponding to the gsecond unstable mode, 1is the

coefficient of the first sine term of g(y).

The values for k3 and k4 are calculated by wusing all
three methods described in Chapter IV. The first and third
methods of choosing the gains require iteration procedures to
find values for k3 and k4 such that the control succeeds in
shifting the unstable roots to their desired locations. The
accuracies of the new pole locations, when compared to the
desired values, depend on how many iterations are used to
find the required gaing. Only a few iterations are necessary
if a low degree of accuracy is desired. However, placing the
poles with increaging accuracy requires, in general, an
increasing number of iterations.

On the other hand, the second method requires only one
iteration to arrive at values of k3 and k4. and the accuracy
of the resulting root locations ig quite impressive. Four of
the five different controllers tested produce new Poincare

exponents accurate to at least four decimal places when

compared to their desired locations. This corresponds to a
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TABLE III
Controller Poincare Exponents, (C( = 0.000)
L
TYPE OF GAIN VALUES COEFFICIENTS POINCARE
CONTROLLER FOR g (y) EXPONENTS
CO;??g;IVE k =-0.117588 330= 0.228753 -0.025062
® k 1.008789 | g, =-0.266650
' 40
ggg?:g k =-0.142515 Cao” 0.188744 -0.025000
PITCH k 0.141415 c4°=-0.190212
o c;g;;c k =-0.116426 84" 0.231038 -0.024805
PITCH k =-0.187789 8,0 0.143241
COLLECTIVE k_=-0.117589 = 0.228753
CONSTANT/COSINE| ,*_ ) 10oq 830=-o sore7e | e
) PITCH - 0 sc )
cgg;#ECTigguE k3=-0.117589 g3°= 0.228753 -0.024994
PITCH k4=-0.173313 843? 0.310409
‘.
99.75 percent accuracy. The fifth controller, cyclic 8ine
pitch control, produceg results accurate to within 09.20
o percent of the desired pole locations. These results are
congistent for a wide variety of flight conditions tested.
Ags an example (refer to Table III), if the real parts of the
. desired pole locations are 5:;,4 = -0.025, the cyclic sgine
pitch control yields Poincare exponentg with real parts at
té Pl -0.024805, whereas the other controllers produce
. regsults better than ts a4 = -0.025062. It s8hould be noted
that, in all the results obtained, the stable modes are left
unchanged.
€ Now, each feedback controller developed ig designed to
125
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stabilize a pair of Poincaré exponents at a s#specific (flight

condition. Similar controllers could be produced for any
flight condition. Thig, however, would require changing the
feedback control gains as the parameters are varied.
Therefore, it would be advantageous for a flight controller,
designed to control the system at a single point, to be able
to reduce or eliminate blade instabilities at off-design
conditions. However, it should be emphasized that no
guarantee of stability exigts at equilibrium conditions other
than those the controller is designed for.

Consequently, the nominal design point for each of the
five scalar controllers is chosen to be at » = 0.40, with p =
1.15, ;( = 1.40, and [, = (g,

controllers are degsigned to sghift the real parts of the

= 0.000. As before, the

.

unstable Poincaré exponents to 53'4 = -0.025. With each
controller set to shift the unstable roots at the chosen
degsign point, flight conditiong are varied and new Poincare
exponents are generated.

Figure 18 illustrates the five flight controllers’
performances when, with the advance ratio held constant at u
= 0.40, p and 5( are varied. Although convergence is8 not
guaranteed for off-design conditions, it can be seen from the
figures that, using this point design, each controller
eliminates the unstable regions over a wide range of p and 5(
combinationg. 1In fact, two of the controllers--collective
constant/cosine and collective constant/sine--eliminate the

entire unstable region for u = 0.40. The other three
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Figure 18. Stability Regions at u = 0.40

controllerg--collective, cyclic gine, and cyclic
cosine--generate small bands of unstable regiong near the
lower end of 5(. The bands produced by the cyclic
controllers extend past p = 1.75 [Figure 18(a)], while the

collective pitch controller eliminates the unstable region

for p =2 1.30 [Figure 18(b)]. Note that these bands of
unstable regions are much samaller in area than the
uncontrolled case. Indeed, the controllersg, using this

single point design, significantly reduce the unstable region
for 4 = 0.40. It should be mentioned that other point
designs were not examined in off-design conditions.

With the same five scalar controllers in place,

stability in hover is considered as a function of p and 5(.
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X Figure 19 compares the controlled and uncontrolled stability
: boundarieg for hover. Figure 19(a) shows that the collective
t K.g
lJ congtant/cosine and constant/sine pitch controllers now
i produce an ungtable region extending past p = 1.75. This
{: narrow band is similar to the region generated by both the
L
t
o cyclic controllers for the u1 = 0.40 case [Figure 18(a)l.
g Figure 19(b) illustrates the resultas of wusing the cyclic
3 cosine and cyclic sine pitch controllers. Once again, narrow
e
‘2 tands of unstable regions are generated, but the cyclic
:: cosine controller eliminateg this unstable region for p =2
i 1.245 and the cyclic sine controller eliminates the band for
-
,! P = 1.285. It is interesting to note that these results are
g
: similar to those obtained when the collective controller is
gl used at » = 0.40 [Figure 18(b)1].
L
( On the other hand, in hover the collective pitch
f controller produces results very much different from those
N previously summarized. With the first four controllers the
"Ry
- unstable regions are greatly diminished when compared to the
N uncoupled case. But now Figure 19(c) shows that when the
[,"-
' collective controller, designed at 4 = 0.40, is wused in
«
o hover, a large unstable region is generated. In fact, this
f region is larger than that generated by the wuncontrolled
. system.
.l,
L Another way of observing how a point-designed controller
N behaves in off-degign cases is to hold p and BC congtant at
: 1.15 and 1.40, respectively, and vary the advance ratio from
(R
r 4 = 0.00 to u = 0.50. Figure 20 summarizes the results for a |
K., [
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system with (ﬁ = (( = 0.000. As can be seen from the figure,
the uncontrolled blade is unstable throughout the entire
flight regime examined. Each controller, desgsigned at u =
0.40 to shift the real parts of the unstable roots from {3'4

= 0.001898904 +to = =-0.025, accomplishes this tasak.

t3,4
Further, four of trke five controllers generate stable systems
from 4 = 0.00 through o = 0.50. As the advance ratio
increases, the cyclic g8ine and cogine pitch controllers
(Figure 20(a)] produce fairly constant, but increasingly
stable, values for the new Poincaré exponents. The same
observations can be made for the collective constant/cosine
and constant/sine pitch controllers [Figure 20(b)], although
at lower advance ratios the new Poincaré exponentg are less
stable than those generated by the cyclic pitch controllers.

On the other hand, the collective pitch controller
[Figure 20(b) ] produces results which differ from the other
four controllerg. Even though the unstable roots are shifted
to their desired 1locations at u = 0.40, the controller
generates unstable modes below advance ratios of 0.06. In
fact, below u = 0.05, the controlled system is more unstable
than the uncontrolled system. Further, above u = 0.40 the
pair of complex conjugate Poincaré exponents crosses the real
axis and splits off as two real roots, although they remain
stable.

It is also interesting to examine the effect of adding

passive damping to the system’s lag hinge. To accomplish

this, CC ig set to 0.001, and, for a desgign point of p = 1.15
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: and 6( = 1.40 at o = 0.40, the uncontrolled system generates
ﬁ: a pair of unstable Poincaré exponents with real parts at 63 4
'

- = 0.000509462. Again, with the damping in place, ¢the five
i controllers are degigned to shift the real parts of the
: unstable roots to té P -0.025, and k3 and k4 are determined
: uging the second method of solution. As shown in Table 1V,
‘5 each of the controllers generatea new Poincare exponents
;; almost identical to the desired values. The cyclic sine

ec
" pitch controller ig, once again, not as accurate as the other
ﬁ four controllers, but it still shifte the roots to within
. 99.24 percent of their desfired values.

C

Now, using the above design point, each of the five

'
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TABLE IV

Controller Poincare Exponents ((( = 0.001)

TYPE OF GAIN VALUES COEFFICIENTS POINCARé
CONTROLLER FOR g () EXPONENTS
CO;?:g;IVE k3=-0.109599 83°= 0.232754 -0.024980

k,= 0.523310 g, =-0.048746
4 40
ggg?;g k3=-0.l44719 c30= 0.176269 -0.024999
PITCH k4= 0.119706 c4o=-0.213101
C;?:;C k3=-0.101668 83°= 0.250909 -0.024810
PITCH k4=-0.202978 s4o= 0.125676
cogg¥Lchég§INE k3=-0.109599 gso= 0.232754 -0.024995
PITCH k4= 0.115905 340:-0.440178
cggggECT$;¥xE k3=—0.109599 33°= 0.232754 -0.025005
PITCH k4=-0.183796 848? 0.277584

controllers is evaluated at off-degign conditions;

case,

are tabulated in Figure 21 and compared to

system. With [

e

stable Poincaré exponents for u

however,

The controllers produce regults and trends

0.001,

the uncontrolled

o

the uncontrolled system generates

Moreover,

at varying values of the advance ratio.

.175.

These

the

Above

unstable

almost

even the

for

uncontrolled

system generates

this

collective

this

resgults

point,
modes.

identical

to the case where (( = 0.000.

pitch controller generates s8table modes throughout the

gspectrum of flight conditions examined. But, below u = 0.20

the Poincaré exponents are not as stable as the wuncontrolled

system, and the collective pitch controller generates complex
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conjugate pairs of atable Poincaré exponents through u
0.50.

The transient responses of the gystem resulting from an
initial disturbance can be determined assuming unit initial
values for each of the four states, 3, [, B‘. and C'. A
collective pitch controller, degigned at u = 0.40, with (( =
0.001, p = 1.15, and 6( = 1.40, 1is used. Figure 22
illustrates the transient responses after ten periods.
Figure 22(a) indicates that both the wuncontrolled and
controlled responses of (3 to a step input are similar. The
regponses damp out rapidly in a periodic manner. As for the

lag modes’ responses, Figure 22 (b) shows that the

uncontrolled system produces a very glightly unstable
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; response while the controlled system damps out the transients

’ﬁ fairly quickly. Figure 22(c) plots the magnitude of the

::ﬁ control response ag a function of the azimuth angle, and

é; shows that the required control is decreaging. It should be

Q: noted that if a rotor’'s nominal rotation rate is 730

t * revolutions per minute, a blade completes ten revolutionsg 1in

,§ 0.822 seconds. Thus, the scalar collective pitch controller

L stabilizes the system in a very short period of time.

*. To verify the above observationg, the other four

3; controllers can also be used to stabilize the system at the

;e same degign point for ten periods, and the flap, lag, and

zrr control transient responses recorded. The responses of each

ii controller are all very similar. Figure 23 ahows the

3 transient responses for the flap and lag modes after ten

~:. periods for two of the controllers--collective constant/sine

;g pitch and cyclic cosine pitch. As can be seen by comparing

i' these figures with the regsponses generated by the collective

.. pitch controller (Figure 22), the controllers do not
significantly alter the stable roots’ responses (i.e., 3),

Q: but they effectively stabilize the lag modes’ responses in a

: short period of time.

; Figure 24 compares the control required during ten of

i the blade’'s revolutions for three of the controllers:

!t_ collective; collective constant/sine; and cyclic cosgine.
Clearly, the required control dramatically decreases as the

;: number of revolutions increases.

¢ It sghould be noted that the trends ahown by the
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Transient Responses with Collective Pitch Control

Figure 22.
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v
( @ collective constant/cosine and cyclic sine pitch controllers
mirror those recorded by the collective constant/sgine and
::: cyclic cosine controllers, respectively. In addition, the
P'a‘ trends observed are repeated when C( is changed from 0.001 to
A 0.000. Therefore, each of the five scalar controllers
o stabilizes the blade flap-lag motion.
a’,f The above results clearly demonstrate the succesa of
* controlling blade flap-lag motion using scalar control. The
'_’,' next step is to s#see if a vector controller can be as
k-~
:.; effective.
v
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Results Using Vector Control

A vector controller can be designed in much the =ame
manner as a scalar controller. However, in this case the
multiple elements of the control vector, G(w). will be wused.
For the current study, both cyclic sine and cyclic cosgine

pitch control will be used. Hence,

_ 6, (¥)
ul(y) = e (y) (5.5)
-
Again, determining the gain matrix k(y) requires
knowledge of the modal controllability matrix g(y). Eq

(4.24) shows this matrix to be

m £ +m £2 m £ +m £t ]
63c 13 940 14 638 13 648 14
-4 -4 -1 -1
) o, f23 * Mo, f2a Mo, T2z * Mo, Tos
gly) = (5.6)
m 2 4+ m £} m, £ +om ? Sy
630 33 e4c 34 38 33 645 34
m 2! s om T m t s m ot?
I 630 43 940 44 638 43 64844 ]

Using the harmonic analysis technique, values for gu(w)
may be calculated at any given azimuth angle. If ns and n4
are the unstable modes, only the last two rows of the E(w)
matrix are of interest. Given that the controllability
condition is satisfied throughout the period, the four linear
equations described in Eqs (4.47) and (4.48) can be solved at
evenly spaced intervals to obtain the Fouriler geries

expansions for the four components of the gain matrix k(y).
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With (ﬁ = (( = 0.000, a design point of p = 1.15 and
= 1.40 at 4 = 0.40 is chosen. As can be seen from Figure 9,
this point is in the unstable region, and the real parts of

the unstable Poincaré exponents are 53 P 0.001898936. The

real parts of the desired pole locations are again chosen to

.

be 63'4 = -0.025.

In calculating the gain matrix, i(w). it was discovered
that the controllability condition is violated twice in the
interval between O and 27. Hence, infinite values of k(y)
are obtained, and the vector controller fails for this
gituation. It should be noted that Calico and Wiesel (43:63)
documented similar behavior in the investigationa of an
isolated rotor blade’s flapping motion.

A second vector controller was designed so that the gain
matrix maximizes the constant terms in Eq (4.50). The
Fourier expansion of the modal controllability matrix, E(w).
provides the Fourier coefficients needed +to calculate the
elements of [kss(w)gaa(w)]o and [k44(w)344(w)]°. as defined
in Eqs (4.64) through (4.66). The values for K33 and K44

required to move the real parts of the unstable Poincare

’

exponents to ta 4 - -0.025 are obtained by varying K33 and

using Eq (4.68) to calculate K The Fourier coefficients

44°
of gsa(w) and 844(W) are again used to construct the Fourier
gseries representation of the gain matrix k(y), and, after
calculating K33 and K44, thig matrix ig used in the feedback
control system to move the new Poincare exponentg to their

degsired 1locations. With K33 = 0.21275545 and K44 =
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0.06116429, the real parts of the new Poincaré exponents are

shifted to {é = -0.025000 when vector control is applied.
Again, all other modal frequencies are left unchanged.

The efficiency of the numerical search procedure used to
find the values for K33 and K44 depends upon the accuracy
desired. Obtaining results with a high degree of accuracy
requires a large number of iterations which, of course, can
be a time-consuming endeavor. Lowering the required accuracy
results in fewer iterations needed to obtain K33 and K44.

In this case, the results obtained wusing the vector
controller are much more accurate than those results obtained
with the five scalar controllers (refer to Table III), sg8ince
K33 and K44 are obtained after 14 ijterations. However,
recall that the scalar control results were obtained without
performing any iterations. Chapter IV outlined a numerical
search procedure for scalar control where one gain is chosgen
and the other calculated, with the procegs being iterated
until the results are satisfactory. With this procedure the
scalar controllers can be just as accurate as the vector
controller, if 8o desired.

The performance of the vector controller in off-design
cages is also considered. The desgign point is chosen to be

identical to the one used for the scalar controllers (p =

0.000 at « = 0.40), and, with

1.15, w( = 1.40, and (ﬁ = C(

the advance ratio fixed at u

0.40, p and w are varied.

¢

For this case, the vector-controlled system produces stable

regults with every posgible p and 6( combination. If the
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gsame controller is used to generate results as p and 5( are
varied in hover, stable responses are again produced
throughout the flight regime. In other words, the vector
controller, degigned for a gsingle point, completely
stabilizes the system for all values of p and 5( in hover and
at 4 = 0.40. Comparing these results to those generated by
the scalar controllers (Figures 18 and 19), leads to the
conclugion that the vector controller eliminates a wider

range of unstable p verses w_ regions than any of the scalar

4
controllers.

The vector controller’'s performance can also be
evaluated by varying the rotor blade’'s advance ratio. Thus,
with the values for p and 5( fixed at the desgign point (p =
1.15, 8( = 1.40, {5 = L, = 0.000, with 4 = 0.40), the advance
ratio ig varied from ¢ = 0.00 to ©u = 0.50. Figure 25(a)

shows that the vector controller generates stable modes
throughout the flight regime inspected. Just a8 with the
scalar controllers, the vector controller produces modes
which become more stable as the advance ratio increases.

With (c = 0.001, resgults, gsimilar to those summarized

above, are obtained. For K33 = 0.21855978 and K44

0.04988617, the vector controller produceg roots with real

components at 83 4 = -0.025000. In other words, the desgsired

root shift ig achieved, and the stable roots are unaltered.

With the design point set at p = 1.15 and 5( = 1.40 for u =

0.40, the advance ratio is varied from x4 = 0.00 to u = 0.50.
The resulte, shown in Figure 25(b), are almost identical to
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the case where C( =0.000. The controller generates stable
modes throughout the spectrum of flight conditions, and these
modes become more stable as the advance ratio increases.

Finally, the controlled system's transient responses are

generated for ten periodsa. Once again, the design parameters
are as follows: p = 1.15; 5& = 1.40; 4 = 0.40; and (( =

0.001. Figure 26(a) is the flap modes’' responses after ten
periods, while Figure 26(b) shows the lag modes’ responses
after ten periods. Both curves are gimilar to those
generated when the five scalar controllers are used. The
trends show that the stable flap responses are not
significantly altered, and the vector controller stabilizes
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the lag modes’ responses, rapidly damping out any transients.
Finally, the physical control required by the vector
controller after ten periods is summarized in Figure 26(c).

It is interesting to compare the two figures summarizing
the required scalar and vector control, Figures 24 and 26(c).
The vector controller is degsigned to maximize the sghift in
the unstable rootgs while minimizing the required control
forcegs. Indeed, as can be seen from the figures, the control
required by the vector controller is less than that needed by
the gcalar controllers, though not gsignificantly.

In the same vein, Figure 27 compares the magnitude of
the gain matrix, k(y), ag a function of azimuth angle for
several of the controllers examined. Again, the collective
constant/cosine and cyclic s8ine pitch controllers mirror
their respective counterparts--collective constant/sine and
cyclic cosine controllers. The gains for the collective and
cyclic cosine pitch controllers are constants while the gains
for the collective constant/sine pitch and vector controllers
are periodic functions of the azimuth angle. This ig8 to be
expected gince, for the constant/sine controller, k4(w) is a
function of the sine of the azimuth angle, according to Eq
(4.29), whereas the collective and cyclic cosine controllers
use congtant gains. As for the vector controller, the gain
k(y) is calculated by a Foufier series expansion as a
function of y, and it, too, is periodic. Note that the gain
required by the collective pitch controller ig greater than
any of the other controllers examined. This observation
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mirrors that found when examining Figure 24: the control
required by the collective controller is greater than that
needed by the other controllers. These observations ashould
be the same, since the required control is generated by the
gain k(y).

Finally, to insure that the observationa sgummarized
above are not unique to a 8ingle design point or flight
condition, the scalar and vector controllerg were designed
for a variety of desired pole locations and flight
conditions. In each case, the results and obsgervations

mirrored those described above.
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! VI. Results from Controlling Coupled Rotor/Fuselage Motion
(‘U
)
1453
)
ﬂ
. Chapter III1 presented and verified the equations of
X
® motion for a coupled rotor/fuselage system. Without control
\
.: the uncoupled system generated unstable roots for both the
-
‘s rigid body motions and the flapping motions of the individual
\., blades on the main rotor. When coupling and reversed flow
- were added, gimilar resultg were obtained. Consequently, to
~ successfully stabilize the coupled rotor/fuselage system two
N
‘;f different types of control are required: one which
g stabilizes the constant coefficient body modes; and a second
which stabilizes the periodic blade modes. Control of the
" - rigid body motion will be accomplished first.
¥
W Controlling The Airframe
k
3 ®
Because the helicopter’'s airframe (including the
)
- horizontal tail) is modeled as a conatant coefficient system,
i
’:,» standard feedback control may be used (50:357-384). Johnson
‘3 (2:794-800) examines three different feedback control s&stems
3 for a hovering helicopter with an articulated rotor:
i( longitudinal velocity feedback; pitch feedback; and lagged
s pitch feedback. Further, he states,
¥
‘ In order to achieve stable flight, the longitudinal
W dynamics of the hovering helicopter require feedback
(. control, either from the pilot or from an automatic
) 147
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control system (perhaps a mechanical system, often using

a gyro). The longitudinal velocity and pitch attitude
: must be sensed and, after appropriate compensgation, fed
Py back to the longitudinal cyclic pitch [2:794].

The pitch feedback control system Johnson examines is

adopted for the present analysis (2:796-798). The feedback
O used is either the helicopter’'s pitch attitude, pitch rate,
or a combination of both. Pitch attitude feedback can

stabilize, with positive gain, the os8cillatory modes which

result from the coupling of the pitch and the longitudinal
velocity. However, posgitive gain decreagses the damping of
the real root representing the pitch mode. Pitch rate
( feedback, also using positive gain, increases the real root
damping and increases the period and time to double amplitude
of the oscillatory roots. Unfortunately, this oscillatory
{ @ response remainsg unstable. Johngon suggests using a
combination of pitch attitude feedback, which stabilizes the
ogscillatory roots, and pitch rate feedback to keep the pitch
.. damping high.
Consequently, the pitch feedback to the main rotor's
longitudinal c¢yclic pitch can be described as=s follows

¢ (2:797) :

68 = —K[TB + 1]9 (6.1)

'K where the gain K is positive. The lead T must be large
enough 8o that the zero is to the right of the open loop pole

(which, in hover, ig principally due to the main rotor's
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pitch damping). Otherwise, the damping of the real root will
decrease with positive gain (2:798).

Another type o0f control system wuses the elevator.
Though ineffective at low s8peeds, deflecting the elevator
through an angle &e produces increments in both the Cm and CL
of the airframe, which helps maintain helicopter satability
throughout the flight envelope (50:28).

A control system utilizing the elevator control surfaces
as well as pitch feedback control to the main rotor's
longitudinal cyclic pitch can be designed sapecifically for
the coupled rotor/fuselage system. A pitch feedback control
] system will first be designed for the helicopter’'s wuncoupled

longitudinal dynamics and compared with Johnson’s analysis.

.'- « A

For simplicity this control system will be referred to as a

pitch attitude feedback control asystem. Remember, though,

that pitch rate feedback is also used in conjunction with

. LIS AT N L

pitch attitude feedback for control of the rigid body modes.
Since the pitch attitude feedback control sgsystem is
implemented using the main rotor’'s longitudinal cyclic pitch,
a control vector B' can be generated by collecting the terms
which explicitly use 6 in the airframe’s uncoupled

8
perturbation equations [Eqe (3.50), (3.51), and (3.53)1:
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B' - 2 | = z |H%* T 3% (6.2)
1 4MR J
b m
3
1 0
L b4 J
lemrmkl
81 R
L cm J
Letting l(‘9 = K and K , = K , a closed-loop feedback
S
control system of the form
iz(w = [A(w) + B]iz(w (6.3)
can be generated such that
[0 0 -K.bl -K ,bl ]
871 s 1
0 0 —Keb; -K ,b;
B = 9 (6.4)
0O O 0 0
1 1
0 O -Ksb4 -K ,b4
I k4 ]

Setting T = 100.0, the 1longitudinal dynamics of the
uncoupled airframe in hover can be generated for various
gaina. Figure 28 shows the root loci for the pitch attitude
feedback control to the longitudinal cyclic for both positive
and negative gains, and mirrors Johnson's results (2:797).
Clearly, increasing the gain not only stabilizes the

ogscillatory hover roots, but algo increages the real root's
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damping.

Pitch attitude feedback control can be added to the
uncoupled body modes to stabilize the helicopter in hover
and, then, with the control in place, the velocity can be
varied. Recall that, without any control, Figure 14 ahowed
that the unstable oscillatory modes became less unstable for
increasing velocities, although they never crossed over into
the stable region. In addition, the vertical and pitch roots
transformed into stable oscillatory modes. Figure 29 shows
the results of letting K = 0.60 and adding pitch attitude
feedback control to the uncoupled system in hover. In hover,
the modes representing the coupling between the helicopter’s
pitch and longitudinal velocity are indeed stabilized. In
addition, the pitch root is gignificantly more stable with
feedback control. However, as the velocity increases, the
oscillatory modes become unstable and eventually become two
real modes, one becoming more unstable and the other
approaching the stable region. The vertical and pitch
motions remain as real, but stable rootas with increases in
the speed.

It appeara that pitch attitude feedback control is
effective in limited off-design cases. Achieving stable
flight throughout the flight envelope requires a satability
augmentation system which adjusts the pitch feedback at
various speeds. At higher s8speeds the elevator can be

deflected to help maintain stable flight. 1In this case, the
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% control is e and the control vector, B‘, is as follows:

. [ 0 T
= () w2 2

‘ pVOSTCL / 2lRQO

e 1 Tée
:_‘ B = (6.5)
K- 0
O
+S 2 - 2

;,, pVO{STCL [?zsao+3‘xca°] SBch }/ [ZQmIc]

T6 Se

5 e
M - -

) Using combinations of pitch attitude feedback through
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For the remainder of this analysis, only the pitch attitude
feedback control system will be used; the elevator will not
be implemented for control.

Stabilization of the coupled rotor/fuselage system
requires modification of the feedback control system. The
elevator control matrix remaing the same, but the matrix
defining the pitch attitude feedback control changes because
now the individual blades on the main rotor provide the
longitudinal cyclic input. Thus, for each of the rotor

1

blades, the pitch feedback vector B ig, without reversed

flow,

1
J

o <

1
bl —Fm(plsca°+pzssao)
1
b r (p,_sc -p, _ca)
B! = ? - m -l o “28 o (6.6)
b3 0
1
Pyl | MaP3g*P1a/By) |

where, with { denoting the blade and varying from one through

\ 1
””L{E”W*“’“’zwi*ﬁocwt [3’%"”4;]}

1 2 2
-sw¢(5+usw¢+p 8 wé] (6.7)

o
N
"

8 1.2 1282y
Pag Vie¥ilataHeY 2 i

In the mixed flow region,
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Pia us (k gﬁ cw¢]
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¢ .2 2g* (6.9)
[+ Pog 3+ ¥ .
' ’ N g
:‘ p38 gl-i cy ¥
‘(
.: Using Eq (6.6) as the control vector, integrating Eq
(6.3) over one period, and summing over the number of blades
Ty
'( on the main rotor reduces Eq (6.6) to Eq (6.2). Likewise, a
h™
:' root locus, obtained by adding pitch attitude feedback
K.
: control [Eqs (6.4) and (6.6)] to the coupled rotor/fuselage
X system in hover and varying K, mirrors Figure 28. With 71 =
' 100.0 and K = 0.60, the pitch feedback control system
.
; stabilizes the oscillatory modes while generating a much more
ot stable pitch root.
_; Using this control, +the velocity is varied and the
: results summarized in Figure 30. This figure shows that the
o
|'\' hover roots are the same as the hover roots of Figure 29.

However, now the pitch attitude feedback control system

stabilizes the body modes up to 122 wm/s. Above this
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Figure 30. Coupled Body Modeg with Pitch Attitude Feedback
Control; Reversed Flow Added

velocity, on= mode is slightly unstable. The other three
roots remain stable through 300 m/s. In addition, the pitch

and vertical modes become more s8table as the velocity is

. increased. Thus, applying pitch feedback control to the

R}

coupled system in hover generates a wider range of satable

off-design airframe roots than the uncoupled case. Again,
changing the pitch attitude feedback control or adjusting the
elevator’'s control surface extendes ¢the airframe’'s stable

. flight evelope through 300 m/s8.
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Clearly, pitch attitude fe«.-dback control, wusing a

combination of pitch attitude and pitch rate feedback, is=s
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beneficial to the airframe’s coupled 1longitudinal dynamics.
Figures 31 and 32 show the variations in the main rotor
blades’ flapping and lagging roots as the velocity increases.
In both cagses the system includes the pitch attitude feedback
control designed for hover. Note that Figure 32 shows the
velocity root loci of the controlled flap modes. The general
trends of the controlled flap modes shown in Figures 31(a)
and 32 are gimilar to the uncontrolled roots summarized in
Figures 11(b) and 17. At low speeds two flap modes transform
from a pair of osgscillatory roots to two real modes and back
to a pair of oscillatory roots. Two more roots are real, but
stable, at speeds above 79 m/s8 while the other four flap
modes generate stable oscillations through 300 m/s. Note
that, when pitch attitude feedback control is applied to the
coupled rotor/fuselage system, all of the flap modes remain
stable through 300 m/s.

Figure 31(b) shows the lag modes of the four blades when
pitch attitude feedback control is added to the coupled
rotor/fuselage system. Once again, the magnitudes of the
imaginary parts of the lag modes are approximately 0.500 from
hover through 300 m/s8, so velocity root loci of these modes
are not plotted. A comparigson between Figure 31(b) and the
plot of the real parts of the uncontrolled 1lag modes as a
function of velocity [Figure 12(b)]} indicates that, at low
speeds, the modes are similar. With control added to the

sygstem, all eight lag modes are atable through 300 wm/s.
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Three pairs of lag modes are nearly identical when compared
to the corresponding uncontrolled modes; the fourth pair’'s
roots are much more stable.

The above discussions indicate that pitch attitude
feedback control applied to the coupled rotor fuselage system
in hover does not significantly alter the individual blade
flapping and lagging motions, except at bhigh speeds where
there are gtabilizing effects on the two previously unstable
flap modes. As for the airframe’'s modes, the pitch attitude
feedback control system stabilizes the oscillatory roots not
only in hover but also for a fairly wide range of off-design
cases (i.e., different velocities). Further, one of the
modes, after it crosses into the wunstable region, remains
only 8lightly unstable, even at very high velocities.
Finally, pitch feedback has a stabilizing effect on the pitch
root as the velocity increases.

For the coupled rotor/fuselage system, the net result of
designing pitch attitude feedback control through the main
rotor's longitudinal cyclic pitch for hover is that only one
body mode goes unstable as the velocity is increased through
300 m/s8. As’ was mentioned earlier, this mode can be
stabilized either by using pitch attitude feedback control or
by adjusting the elevator. Consequently, the helicopter can
achieve stable flight wusing standard feedback control
mechanisms even at very high speeds.

Note that, with this particular helicopter
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configuration, the blades’ periodic flapping and lagging
motions are stable throughout the flight envelope ingpected.
It is quite possible that different helicopter configurations
can generate unstable flap or lag modes with variations in
the helicopter’'s forward velocity. It is desirable to alter
the helicopter’'s parameters in order to produce unstable
responses8 in either the flap or lag modesg, and then control
those modes using the modal control technique.

Therefore, for case ii, Rm = 8.00, cm = 0.300, and @ =

4
0.10. This results in unstable lag modes from hover through
16 m/s8 for the uncoupled rotor blades. Figure 33(a) shows
that, above this speed, all eight lag modes are stable. A

plot of the real parts of the uncoupled flap modes as a
function of helicopter speed, shown in Figure 34(a),
indicates that each of the four pairs of flap roots produce
gstable oscillations at Jlower speeds. As the velocity
increases, though, real roots are generated and four of these
roots are unstable at high speeds.

Adding reversed flow to the uncoupled blades’' equations
of motion doesg not alter the lag modes except at high speeds;
the modes are more gstable when reversed flow is8 included
[refer to Figure 33(a)l. Figure 34(a) shows that adding
reversed flow stabilizes the uncoupled flap modes at higher
velocitiea. MNote that these results mirror those obtained
uging the original rotor parameters.

Figure 35 showsa the uncoupled body modes (without
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reversed flow being included) for case ii. Figure 35(a) is a
velocity root locus of the modes while Figure 35(b) plots the
real parts of the body modes as a function of velocity.
Because the airframe's equations are normalized with respect
to Rm and Qm, changing either of these two parameters alters
the uncoupled body root=s.

The coupled body modeg (with reversed flow added to the
gystem) can also be generated for case ii, ag shown in Figure
36. Note again that the coupling terms do alter the modes
with increases in speed when compared to the uncoupled modes
(Figure 35). The four blades’ coupled flap modes are also
changed with case ii. Comparing Figures 11(b) and 34(b)
reveals that the magnitudes of the real parts of the Poincare
exponents are gsmaller in case ii. In addition, one pair of
flap modes is unstable at very high speeds. Figure 37 shows
the velocity root loci of the four pairs of coupled flap
modes for case ii. The dashed and sgolid lines in the figure
indicates corresponding pairg of roots.

Finally, Figure 33(b) shows that, for case 1ii, three
paira of the coupled lag modes are unstable at velocities up
to approximately 186 m/sg. Note also that, at very high
speeds, a pair of lag modeg is unstable. It is interesting
to compare these results to the uncoupled lag modes generated
for case ii [Figure 33(a)]. It appears that coupling the
airframe longitudinal dynamics to the blades' Jlag modes is

destabilizing. It should be noted that the imaginary part of
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each of the lag modes has a magnitude of about 0.100 from
hover through 300 m/s.

For casge ii, pitch attitude feedback control can be
designed, in hover, to control the airframe’'s wunstable
oscillatory roots. With 7 = 100.0 and K = 0.60, the coupled
rotor/fuselage sytem’'s roots are shown in Figures 38 through
40 as functions of velocity. Figure 38 indicates that, for
cagse ii, pitch attitude feedback control stabilizes the
coupled airframe’'s oscillatory roots through 300 m/s. The
root repregenting the helicopter’s pitch motion does,

however, become unstable at speeda above 175 w/s. Figures
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39(a) and 40 show all eight flap modes to be stable through
300 m/8 when pitch attitude feedback control +to the main
rotor’s longitudinal cyclic pitch i added to the coupled
rotor/fuselage system. Note again that the dashed and solid
lines represent corresponding pairs of flap roots.

The coupled lag modes, sg8hown 1in Figure 39(b), are
altered when pitch attitude feedback control is=s used.
Without any control (Figure 33(b)], s8ix lag mode=s are
unstable up to 186 m/g8, and the other two lag modes become
unstable at very high speeds. When control is applied to the

coupled rotor/fuselage system for case ii, 8ix of the 1lag
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modes are unstable at speeds as high as 218 mwm/s. However,
the two remaining modes are now stable throughout the flight
regime inspected.

Thus, for case 1i, 8ix unstable lag modes exist after
pitch attitude feedback control is added to the coupled
rotor/fuselage system. The modal control technique can now

be used to control these unstable modes.

Controlling The Blades

First, however, a control system which uses the modal
control technique must be developed. As was the case in
controlling an isolated blade’'s flap-lag motion, the
controller chogen for the coupled rotor/fuselage system uses

a conventional swaghplate mechan ' sm:

u(y) = Bc (6.10)

The control matrix B(y) is generated by extracting the
collective and cyclic pitch terms from the A(y) matrix found

in Eq (3.101):
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Note that t3 and t5 were defined in Eq (3.71).

In reversed flow, the gigns of the terms in Eq (6.12)
are reversed. In mixed flow these terms are altered such
that
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._: The modal control technique uses the control matrix
= @ defined in Eq (6.11) to control the unstable blade modes in
j the coupled rotor/fusgelage system. Scalar control is
; examined firgt.
s Determining the gain k(y) required to =shift the real
‘j parts of the unstable blade modes of a coupled roter/fuselage
2
" system to their desired 1locationg necessitates calculating
¢ the modal controllability matrix, E(VJ). Recall that Eq (5.4)
£ deacribed the E(w) matrix used in controlling an isgolated
blade’s unstable lag modes. If the helicopter is modeled
1C
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with a 4-bladed rotor, the control matrix, B(y), is of order

20 when scalar control is to be wused. Since E(w) =
F'(¥)B(y) [Eq (4.24)], g(¥) is also a 20x1 vector. Each

row of E(w) (where ¢ denotes the row) can be expressed as

—l -1

Br a™) =ty 5:B3i a* To,4Bai,a
-1
1 aBiera t T2 4eaBuz. 8t 12 seaBpan (6.16)
where ¢ gsteps from 1 through N, 4 = 4x{ ., and & 1is the
desired controller: collective pitch; cyclic 8ine pitch; or

cyclic cosine pitch.

The scalar collective pitch controller is firsast
examined. Recall that, with pitch attitude feedback control
stabilizing the body modesg in hover, the coupled body modes
remain stable through 175 m/s8 (Figure 38). The addition of
collective pitch control ¢to the pitch attitude feedback
control signal in hover shiftg the most unstable pair of lag
modes to their desired locations. The results are summarized
in Figures 41 through 43.

Figure 41 plots the eight roots repregenting the coupled
lag modes when both pitch attitude feedback and scalar
collective pitch controls are applied to the coupled
rotor/fuselage system. Figure 41(a) shows the real parts of
the three coupled conjugate pairs of lag roots, while Figure
41(b) shows the pair of real roots. This figure may be
compared to Figure 39(b), which shows six lag modes to be

ungstable at speeds up to 218 m/g when only pitch attitude
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{ &

. feedback control is used to stabilize the helicopter’'s
coupled body modes. In hover and without any modal control,

) the two most unstable lag modes have Poincare exponents at

“ 5.19259x10 ¢ * 1.05750x10 ‘1. The scalar collective pitch

2 controller is designed to shift these modes so that the real
¥

jt‘ parts of the new Poincare exponents are at -0.001. Figure

2 41(a) shows this to be the case. In additiorn, the other

modes are unaltered. Thus, for the coupled rotor/fuselage
vi\- system, s8calar collective pitch control functions asg
5

predicted in Chapter 1IV.
- However, when scalar collective pitch control is
. (-
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applied to an unstable pair of lag modes at a single design
point, the other three pairs of lag modes are sgignificantly
altered in off-design cases. This is readily apparent when
comparing Figure 39(b) to Figure 41. The latter figure
indicates that the 1lag modes for which the control was
designed remains stable through 300 m/s. Another pair of
modeg is stabilized at lower speeds; however, they are
unstable at higher speeds. A third pair of lag modes remains
unstable throughout most of the velocity regime inspected;
they are s8lightly stable at low speeds and at very high
speeds. The final pair of modes, shown in Figure 41(b),
splits off as two real Poincare exponents just above the
desgign point. One Poincare exponent becomes unstable as the
velocity increases while the other becomes more sgtable with
increasing velocity. Except for the two lag roots which
become real, the imaginary parts of the lag roots do not vary
much as the velocity is increased; hence, velocity root loci
are not plotted.

The collective pitch controller, when designed to
gtabilize a pair of lag modes in hover, also alters the flap
modes in off-degsign cases, as shown in Figure 42. Note that
Figure 42(a) iaga a plot of the real partg of the flap modes as
a function of velocity while Figures 42(b) and 42(c) plot the
magnitudes of the imaginary partsg of the flap modes versus
velocity. Comparing these figures to Figures 39(a) and 40

indicates that although the flap modes are unaltered at the

176




N

c:l

Y

<

o

" ~0.0% JoREAL ROOTS

& ]

N ]

oy ]

':.. ~0.03 4

{ & g

o] 3
» =X ]

. % =005 J

>

X E

e E ]

. p

3.‘ 5 ~0 07 -5

\ e

" -4
» ‘% 0.0 E

~0.09
) ]
" ]
. ~0.11 ?:
]

.

T E
L ]

) —=0.i 3 —r—r——— S SR DUURAR A A 2 an e g e o o 2 e o o
N 0.03 100.00 20000 300.00
. HELICOPTER VELOCITY (M/S)

P €

v (a)

[

D

. 0008 0.605 ~
JREAL POCTS 3

¢ ] ]
- o —0.005 4 o —0-005 3
. 4 ] 4 ]

] b 5 ?j
g = ] = ]

. . 3 .
., 3 -~ 215 g ~0.015
|~ B ]
o } ] N] ]

; £ I

S s : ke ]
. © -0.325 © -0.025 4
- g ] g 3

- 2 g

2 & 0035 ] %—0‘035 3
. .- 4 ] 2 ]

Q %] p
: $ - S

‘. - 4 j

s ~€.04¢ 4 ~0.045 3
- 3 ]

3 "0055~..rﬁﬁ—rlrr|\ﬁ.xfTrlTr.lrvvvrx| —0.0554-1—-'71"'7-.WVI'ﬁI!'Vl"j"'?_T’I
L .00 100.00 200.0 300.00 0.00 100.00 200.00 300.00
- HELICOPTER VELOCITY (M/S) HELICOPTER VELOCITY (M/S)

(b) (e)

- Figure 42. Coupled Flap Modes ag a Function of Velocity with
C Controls; Case ii
.l
N 177




desgign point, they do change ag the velocity increases.

Still, all four pairs of Poincaré exponents remain gtable
through 300 m/s8. Note that one pair splits off ags two real
roots at the upper end of the velocity spectrum.

Finally, Figure 43 shows the body modes ag a function of
velocity when scalar collective pitch control is wused to
stabilize two lag modes in hover. Figure 43(a) plots the
real parts of the body modes as the velocity is increased,
and Figure 43(b) plots the magnitude of the imaginary part of
the oscillatory body roots as a function of velocity. This
figure can also be compared to Figure 38, which shows the
body modes as a function of velocity when pitch feedback is
the only control applied to the system. It appears that the
body modes are altered when scalar control is used to control
one of the lag modes. The oscillatory roots shown in Figure
38 become more stable with increasing speeds; at higher
velocities the roots become real, but remain stable. On the
other hand, Figure 43 shows that, with s8calar collective
pitch control added to the coupled rotor/fuselage system,
these two roots become less gstable as the gpeed ig increased.
The pitch root is not too different from the case where only
pitch feedback control is used. The vertical mode, though,
is different. With just pitch attitude feedback control this
mode becomes ungtable at speeds above 175 m/8; when both
pPitch attitude feedback control and collective pitch control

are applied to the system in hover, the vertical mode becomes
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Figure 43. Coupled Body Modes as a Function of Velocity with
Controls; Case ii

more stable with increasing speed (see Figure 43). Thus,
modal control does influence the airframe's modes in
off-design cases.

To confirm the obgervations summarized above, various
design points and off-design cases were examined. In
addition, the other four scalar controllers, as well as the
vector controller, were tested. 1In all cases, the general
trends previously observed were repeated. In other words,
modal control does shift the unstable modes to their desired
pole locations while 1leaving the other modes wunaltered.
Further, the controlled modes are, in general, more stable

than their uncontrolled counterparts in off-design cases.
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However, the modal controllers do influence the uncontrolled

modes in off-design cases. It must be emphasized, though,
that the modal control technique does not guarantee a
system’'s stability in off-design cases. Enhancing a system’'s
performance over a wide range of operating conditions while
uging a scalar controller designed at a s8single point is a
bonus.

It remains to be demonstrated that the modal control
technique can be used to stablize more than two modes at one
time. Since 8ix unstable lag modes are generated in case 1ii,
this question can be addressed.

Scalar collective pitch control of four wunstable lag
modes was first attempted at various desgign points using the
gcalar control to set the sum of the real parts of the four
modes. Unfortunately, gain values could not be found which
shifted all four lag modes to stable locations. The same
results were repeated when the other s8calar and vector
controllers were used. Even though the trace rule isg still
va.id, finding the required values for the individual
componentg of the gain matrix is quite difficult once there
are more than two unstable modes to control.

On the other hand, it is possible to stabilize more than
two lag modes using the technique suggested in Chapter 1IV.
That is, a modal control system which uses either a scalar or
vector controller can be used to shift a pair of unstable lag

modes to their desired locations at a gpecific degign point.
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The resulting closed loop system is a new linear system with
periodic coefficients. Hence, another modal controller can
be designed for this new system to ghift a second pair of lag
modes to their desired 1locations. This process may be
repeated until all the instabilities are eliminated at the
design point.

The technique described above is used to control the six
unstable lag modes of the coupled rotor/fuselage system, and
the results summarized in Table V and VI. Again, a s8calar
collective pitch controller is wused ¢to s8stabilize all s8ix
unstable roots. The design point is chosen to be at hover,
and the real parts of the desgsired Poincare exponents are
chogen to be at -0.001. The Poincare exponents of the
uncontrolled system (in hover)are listed in the first column
of Table V in the following order: the first four pairs of
values represent the coupled lag roots (notice that three
pair are unstable); the next four pairg corregpond to the
coupled flap roots; and the remaining four Poincaré exponents
(two real, one pair of complex conjugate roots) represent the
coupled body roots.

The second column of Table V sgshows that a scalar
collective pitch controller does shift the firat pair of
unstable lag modes to their desired locations, and the other
modeg remain unaltered through six decimal places. Using
thig controlled system, another scalar collective pitch

controller is designed to shift the second pair of unstable
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TABLE V

v‘- ‘. '- 'l

Coupled Rotor/Fuselage Poincare Exponents

(A
: UNCONTROLLED SYSTEM 1 CONTROLLER
3 5.192593e "+ 1.057496e ‘i |-9.995077e ‘+ 3.026290e i
X o 3.059946e "+ 1.057554e 'i| 3.059855e -+ 1.057554e .
f 9.042715¢ °+ 1.057536e *i| 9.057906e °+ 1.057536e '\
-3.408090e >+ 1.091555e 'i |-3.408137e °* 1.091553e ‘i
' v -3.795581le 2+ 2.099687e i |-3.795597e >* 2.009653e ‘i
? -3.805239e 2+ 2.389080e i |-3.805223e -t 2.380114e Zi
- -3.806932e 2+ 2.390504e °i|-3.806012e 2+ 2.390474e 2.
f;r -4.149921e °* 2.555194e -1 |-4.149991e ‘% 2.555188e i
: -1.105481e °+ 1.248439e i |-1.104960e °% 1.248497e >i
4 ~9.980934e °;-6.220265e > |-9.980960e ’;-6.220364e >
(@
.
¢ 2 CONTROLLERS 3 CONTROLLERS
Y -9.950731e” ‘+ 3.025793e 'i|-9.927525e ‘: 3.025679e ‘i
-1.004005e “+ 4.394546e i |-1.378458e "+ 6.52571le -i
4 9.234463e °+ 1.057536e i [-1.000030e "+ 1.264130e >:
, ~3.438676e °+ 1.001054e ‘i |-3.438994e °* 1.091939e ‘i
?" -3.802735e 2+ 2.111320e 2i|-3.801327e >% 2.103759e i
3 -3.803062e >+ 2.387222e Zi {-3.804800e 't 2.389742e ‘i
? -3.807493e 2+ 2.389073e 2i |-3.806628e *+ 2.389868e i
:‘ -4.168726e *+ 2.557609e i |-4.158455e -t 2.54493le i
' -5.531076e ‘+ 1.321861e i | 7.464530e ';-7.432865e '
: -1.000727e %;-6.237134e > [-9.979118e °;-6.224421e
€

182

L YA

s
P A gt

s




Poincaré exponentg to -0.001. The third column in Table V
indicategs that indeed this is the case. Unfortunately,
numerical inaccuracies can be noticed in the wuncontrolled
modes. The rootg represgsenting the coupling between the
body's pitch and longitudinal velocity (the next to the lasat
pair of modes shown in the column) are different. In
addition, the other roots are accurate to only four or five

decimal places. The last column in Table V ghows the results

of controlling the final pair of unstable Poincaré exponents.

Again, the scalar collective pitch controller shiftsg the
unstable roota to their desired locations. This time,
however, the numerical inaccuracies are sgignificant. The
roots representing the coupling between the body's pitch and
longitudinal velocity have now become real; in fact, one is
unstable. The other modes are accurate to only three or four
decimal places.

Table VI shows a comparison between the gaing required
for each of the three scalar collective pitch controllers.
Notice that the gains are all on the same order of magnitude.

The results gummarized in Table V indicate that the
technique used to control multiple blade instabilities is
valid. However, numerical inaccuracies are a factor when
generating the uncontrolled modes and become noticeable when
the modal control technique is8 wused more than once at a
particular design point.

As a final note, the modal control technique can also be
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TABLE VI

Controller Gains

1 CONTROLLER 2 CONTROLLERS 3 CONTROLLERS
-20.1367 -20.1367 -20.1367
9.8640 9.68640 9.68640
0.0000 25.9870 25.0870
0.0000 21.05096 21.0596
0.0000 0.0000 22.2350
0.0000 0.0000 5.4816

used to stabilize the main rotor’'s bladea with individual
blade controllers. As Calico and Wiesel observed, any number
of unstable blade modes can be controlled with gimple
one-blade scalar controllers (43:64).

Therefore, s8ince a combination of pitch attitude
feedback to the main rotor’s longitudinal cyclic pitch and
elevator deflectiong can be wused to stabilize the body
modes, a coupled rotor/fuselage system with multiple
ingtabilities can be successfully controlled throughout a

wide range of flight conditions.
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. VII. Conclusions

- The flap-lag equations of motion of an isolated rotor
blade’'s flap-lag motion and those for a rigid helicopter
containing four blades free to flap and lag were derived. In
addition, control techniques were developed to stabilize both
systems for a variety of flight conditions. Some conclusions
concerning the results generated during thig sgtudy are

gsummarized below.

Control of Blade Flap-Lag Motion

Modal control theory, implemented through the collective
and cyclic pitch control mechanisms, reduced or eliminated
- blade flap-lag instabilities. The pole placement technique
5 accurately shifted unstable roots to their desired 1locations
while leaving the stable modes unaltered.

The five scalar controllers considered all shifted the
ungtable roots to desgired locations. When used at off-degign
points one controller, wusing collective pitch, failed to
stabilize the blade over a wide range of p and 5( parameters
k up to 4 = 0.06. The other sgcalar controllerg reduced the
blade’'s unstable regiong from hover through u = 0.50.

Similar resgults for the vector controller were obtained.

I T Ty s,
-

However, this controller eliminated the unstable regions in

the p versgus w parameter space for both hover and u = 0.40.
{
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In fact, the vector controller produced results which were
better than those generated by any of the scalar controllers.

In summary, both the s8calar and vector controllers
shifted the unstable roots to desired locations, and, using a
single design point, reduced or eliminated +the wunstable
regions of a blade’'s flap-lag motion throughout a wide

variety of flight conditions.

Control of Coupled Rotor/Fuselage Motion

Coupling the flap-lag equations of motion of four rotor
blades to a rigid airframe altered the flap, lag, and
airframe roots. A pitch attitude feedbtack controller, which
used a combination of pitch attitude and pitch rate feedback
to the rotor's longitudinal cyclic pitch, was designed to
stabilize the uncoupled body modes in hover. The game
feedback control mechanism also stabilized the body modeg of
the coupled rotor/fuselage system, not only at the design
point but also over a wide range of off-design velocities.

Although not specifically considered in this research
effort, stabilizing the rigid body modes throughout the
flight envelope can be accomplished by scheduling the gains
in the pitch attitude controller.

The coupled rotor/fuselage system wag also used ¢to
further analyze the modal control technique developed in
Chapter IV. Even though the gsystem was of order 20, there
were no numerical difficulties in degigning a modal
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controller to place a single pair of unstable roots. It was

shown that, at a specific design point, scalar and vector
control shifted a pair of unstable Poincare exponents to
desired locationg without altering the other modes in the
system. In addition, the controllers, designed at a single
point, stabilized the controlled lag modes over a wide range
of off-design cases. However, the controllers altered +the
other modes in off-design cases.

Finding gains which &8tabilized more than two roots
proved to be very difficult. However, the modal control
technique was used to eliminate multiple blade instabilities
by first controlling a pair of unstable rootg at a sapecific
desgign point. The resulting cloged loop system wag a new
linear system with periodic coefficients. Another modal
controller was designed for this new system to shift a second
pair of unstable roots to desired locations. This process
was repeated wuntil all instabilities were eliminated.
Numerical inaccuracies, unfortunately, became noticeable when

modal control was used more than once.
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